Unidad 12. Anualidades Diferidas


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Unidad 12. Anualidades Diferidas"

Transcripción

1 Unidad 12 Anualidades Diferidas

2 Una anualidad diferida es aquella cuyo plazo no comienza sino hasta después de haber transcurrido cierto número de periodos de pago; este intervalo de aplazamiento puede estar dado en años, semestres, etc. Supongamos por ejemplo, que se difiere 6 años el pago de una anualidad cierta ordinaria; en este caso los pagos comenzarán al final del sexto periodo de la anualidad vencida: La duración de una anualidad diferida es el tiempo que transcurre entre el comienzo del intervalo de aplazamiento y el final del plazo de la anualidad diferida, es decir, comprende dos partes. La primera o preliminar se compone del tiempo comprendido entre el momento actual y el comienzo del plazo de la anualidad (intervalo de aplazamiento t) y la segunda por el plazo de la anualidad n. Las anualidades diferidas pueden ser vencidas o anticipadas, dependiendo del momento en que tiene lugar el pago. Monto de anualidades diferidas a una tasa efectiva de interés El monto de una anualidad diferida, bien sea vencida o anticipada, se calcula con los mismos procedimientos que los de las anualidades vencidas o anticipadas (mismas tasas de interés, plazo, renta, etc. ), ya que durante el intervalo de aplazamiento no se gana interés alguno, puesto que no se entrega ningún pago durante el mismo. Una vez transcurrido el intervalo de aplazamiento, la anualidad diferida no se distingue de cualquier otra anualidad (vencida o anticipada) cuyo plazo ha comenzado; es decir, las fórmulas para anualidades diferidas serán las mismas que se emplearon para calcular anualidades. vencidas y anticipadas, debiéndose observar exclusivamente si el primer pago se efectúa al final o al inicio del plazo de la anualidad diferida. A continuación se presentan las fórmulas de los montos de anualidades diferidas, destacando que para cada alternativa entre la frecuencia de pagos p y la convertibilidad

3 de la tasa m existen fórmulas que permiten consultar las tablas financieras y obtener con más rapidez los resultados. Cálculo del monto de una anualidad diferida durante t años, pagadera anualmente al final de cada año, durante n años, a una tasa efectiva de interés (En caso de que los pagos periódicos sean de R pesos, se multiplican las fórmulas anteriores por R.) EJEMPLO: Después de 5 años, y al final de cada año, pensamos invertir $ Qué cantidad tendremos dentro de 20 años si la tasa de interés efectiva que nos otorgan es del 8% anual? Por tanto dentro de 20 años tendremos un monto de $

4 Cálculo del monto de una anualidad diferida durante t años, pagadera anualmente al comienzo de cada año, durante n años a una tasa efectiva de interés En caso de que los pagos periódicos sean de R pesos, se multiplican las fórmulas anteriores por R. EJEMPLO: Una persona de 20 años desea invertir, desde que cumpla 30 años, una cantidad de $ anuales al principio de cada año. Qué cantidad habrá acumulado cuando cumpla 45 años, si el banco le otorga una tasa de interés efectiva del 12% anual?

5 Monto de anualidades diferidas a una tasa nominal de interés capitalizable m veces al año 1.1 Cálculo del monto de una anualidad diferida durante t años, pagadera en forma vencida p veces por año, durante n años, a una tasa de interés nominal capitalizable m veces por año En caso de que los pagos anuales sean de Ra pesos, se multiplican las fórmulas anteriores por Ra. EJEMPLO: Cuando cumpla 22 años un niño que hoy tiene diez deberá recibir la suma de $ al final de cada trimestre durante 15 años. Si esta cantidad se invierte a medida que se recibe, de manera que produzca el 5% de interés anual convertible trimestralmente, qué cantidad tendrá este niño cuando cumpla 37 años?

6 1.2 Cálculo del monto de una anualidad diferida durante t años, pagadera en forma anticipada p veces por año, durante n años a una tasa de interés nominal capitalizable m veces por año En caso de que los pagos anuales sean de Ra pesos, se multiplican las fórmulas anteriores por Ra. EJEMPLO Un señor desea que su hija de 15 años reciba desde que cumpla 18 años en forma semestral, una cantidad de $ durante 5 años. Cuánto habrá acumulado la hija a los 23 años si decide invertirlos en un fondo que le proporciona el 18% anual convertible mensualmente?

7 El lector debe darse cuenta del hecho de que el cálculo se facilita con el empleo de las fórmulas simplificadas de cada una de las distintas alternativas presentadas entre la frecuencia de los pagos p y la convertibilidad de la tasa m, y por otra parte, que para obtener las respuestas de las diferentes incógnitas que en ellas aparecen, como renta, tiempo, tasa de interés, etc., sólo necesita despejarlas correctamente de la fórmula correspondiente. Valor presente de anualidades diferidas a una tasa efectiva de interés El valor presente de una anualidad diferida se calcula a partir de las fórmulas de valor presente para anualidades vencidas o anticipadas (según sea el caso) y traídas al momento actual, es decir, descontadas por el intervalo de diferimiento t. Para mejor comprensión del concepto anterior se presentan los desarrollos de sus fórmulas Cálculo del valor presente de una anualidad diferida durante t años, pagadera anualmente al final de cada año, durante n años, a una tasa efectiva de interés Supóngase que se tiene una anualidad vencida de una unidad de moneda pagadera durante n años, pero diferida t años; es decir, el primer pago se efectuará en el año t + 1 y el último en el año t + n Es posible obtener otra fórmula para conocer el valor presente de anualidades diferidas vencidas, si se considera la diferencia del valor presente de una anualidad vencida pagadera durante n + t años y el valor presente de una anualidad vencida

8 pagadera durante el intervalo de aplazamiento t, es decir: Si la renta no es unitaria, se necesitan multiplicar las expresiones anteriores por R. EJEMPLO: Un obrero desea que su hijo de cinco años reciba, después de que cumpla 15 años y en forma vencida, $ anuales hasta que cumpla 24 años a fin de asegurar la terminación de sus estudios. Cuánto debe depositar ahora, si el banco le otorga una tasa de interés efectiva del 12% anual? Por tanto, el obrero debe depositar en este momento $ Cálculo del valor presente de una anualidad diferida durante t años, pagadera anualmente al comienzo de cada año, durante n años a una tasa efectiva de interés Supóngase que se tiene una anualidad anticipada de una unidad de moneda pagadera durante n años, pero diferida t años, es decir, el primer pago se efectuará en el año t y el último en el año t + n - 1:

9 Es posible obtener otra fórmula para conocer el valor presente de anualidades diferidas anticipadas, si se considera la diferencia del valor presente de una anualidad pagadera durante n + t - 1 años y el valor presente de una anualidad pagadera durante t - 1 años, es decir: R. EJEMPLO: Si la renta no es unitaria, se tienen que multiplicar las expresiones anteriores por Qué capital deberá depositar una empresa para que al cabo de 5 años pueda disponer de una renta anual de $ para trabajos de investigación de operaciones, pagaderos al comienzo de cada año y durante los 10 años siguientes, si el banco le abona el 7% de interés anual efectivo?

10 Valor presente de una anualidad diferida pagadera a tasas nominales de interés capitalizables m veces al año El valor presente de una anualidad diferida se calcula a partir de las fórmulas de valor presente para anualidades vencidas o anticipadas que trabajan a tasas nominales de interés, (según sea el caso), y traídas al momento actual, es decir, descontadas por el periodo de diferimiento t. A continuación se presentan para mejor comprensión de lo expresado anteriormente los desarrollos de las fórmulas. 1.1 Cálculo del valor presente de una anualidad diferida durante t años, pagadera p veces al final de cada año durante n años, a una tasa nominal de interés capitalizable m veces al año Supóngase el pago de una unidad de moneda al año, es decir, en cada p-ésimo de año se pagará 1/p. Puesto que el primer pago de 1/p se hace al cabo de (t + 1/p) años, su valor presente a la tasa de interés i( m ) capitalizable m veces por año es: El segundo pago de 1/p se efectúa al cabo de (t + 2/p) y su valor presente es: Se continúa el mismo procedimiento y se observa que el penúltimo pago de 1/p se efectúa dentro de (t + n - 1/p) años, y su valor presente es: El último pago se efectúa dentro de (t + n) años y su valor presente es:

11 Si se suman los valores lpresentes anteriores, se obtiene el valor presente de toda la anualidad diferida cuyo símbolo es Aplicando la fórmula de la suma de una progresión geométrica con razón (1 + i') -m/p se tiene: multiplicando numerador y denominador por (1 + i)m P y conmutando los términos del segundo miembro: Por tanto, para obtener valores presentes de este tipo de anualidades diferidas vencidas, es necesario multiplicar el valor presente de las anualidades vencidas (obtenidas por cualquiera de las fórmulas estudiadas en capítulos precedentes) por el factor de descuento (1 + i') -mt EJEMPLO: El testamento de una persona, estipula que un asilo recibirá después de transcurridos 10 años, una renta trimestral de $ durante 20 años a pagar al final de cada trimestre. Si el banco concede el 4% de interés capitalizable semestralmente, encuentre el depósito que debe hacerse en este momento.

12 Por tanto, el depósito debe ser de $ Para encontrar el valor de alguna de las incógnitas que se pueden presentar en problemas de valor presente de anualidades diferidas, como la renta, el tiempo, el interés, etc., sólo es necesario despejarlas adecuadamente de la fórmula general. Cálculo del valor presente de una anualidad diferida durante t años, pagadera p veces al comienzo de cada año durante n años, a una tasa de interés nominal capitalizable mm veces por año Supongamos el pago de una unidad de moneda al año, es decir, en cada p- ésimo de año se pagará 1/p. Puesto que el primer pago de 1/p se hace al cabo de t años, su valor presente a la tasa de interés nominal (-) capitalizable m veces por año es: El segundo pago de 1/p se hace al cabo de (t + 1/p) años y su valor presente es: Se continúa el mismo procedimiento y se observa que el último pago de 1/p se efectúa dentro de (t + n - 1/p) años, y su valor presente es:

13 Por tanto, para obtener valores presentes de este tipo de anualidades diferidas anticipadas, es necesario multiplicar el valor presente de las anualidades anticipadas (obtenidas por cualquiera de las fórmulas estudiadas en capítulos precedentes) por el factor de descuento (1 + i ) -mt EJEMPLO: Qué capital deberá depositar una fundación científica er un banco para que al cabo de 20 años pueda disponer de una renta semestral de $ para trabajos de investigación, pagadera al comienzo de cada semestre, durante los 25 años siguientes, si el banco le abona el 4% de interés capitalizable trimestralmente?

14 Por tanto, se requieren $ como depósito. Es importante destacar cómo se facilita el cálculo con el empleo de las fórmulas simplificadas de cada una de las distintas alternativas presentadas entre la frecuencia de los pagos p y la convertibilidad de la tasa m, por otra parte, es posible obtener la fórmula de cualquier incógnita como la renta, el tiempo, la tasa de interés, etc., despejando correctamente sus valores de la fórmula correspondiente. Ejercicios: 1) Qué renta semestral se recibirá durante 6 años, habiéndose invertido un capital de $ con una tasa del 8% convertible semestralmente, si se desea recibir el primer pago dentro de 8 años? 2) Qué cantidad habrá que invertir para asegurar una renta de $ al comienzo de cada año durante 5 años, debiéndose recibir el primer pago dentro de 7 años? Supóngase que el interés es del 6% capitalizable anualmente. 3) Si se ha hecho una inversión de $ al 7% convertible semestralmente, para recibir $ al principio de cada semestre durante 7 años, cuál es el tiempo de aplazamiento de la anualidad para recibir la renta semestral deseada?

SEMINARIO TALLER FUNDAMENTOS DE MATEMÁTICAS FINANCIERAS. DIRIGIDO POR Edgardo Tinoco Pacheco

SEMINARIO TALLER FUNDAMENTOS DE MATEMÁTICAS FINANCIERAS. DIRIGIDO POR Edgardo Tinoco Pacheco SEMINARIO TALLER FUNDAMENTOS DE MATEMÁTICAS FINANCIERAS DIRIGIDO POR Edgardo Tinoco Pacheco CONCEPTOS BASICOS DE MATEMÁTICAS FINANCIERAS 1. Fundamentos 2. Interés simple 3. Interés compuesto 4. Tasas de

Más detalles

ITSS. Matemáticas financieras Unidad 3 Anualidades Material para la evaluación. Versión Completa 2.0. M.F. Jorge Velasco Castellanos

ITSS. Matemáticas financieras Unidad 3 Anualidades Material para la evaluación. Versión Completa 2.0. M.F. Jorge Velasco Castellanos ITSS Matemáticas financieras Unidad 3 Anualidades Material para la evaluación Versión Completa 2.0 Anualidades 1 qué cantidad se acumularía en un semestre si se depositaran $100,000.00 al finalizar cada

Más detalles

Fundamentos de valor del dinero en el tiempo

Fundamentos de valor del dinero en el tiempo Fundamentos de valor del dinero en el tiempo Fundamentos básicos Dr. José Luis Esparza A. Valor del Dinero en el tiempo En la práctica, siempre es posible invertir el dinero, ya sea en un banco, en inversiones

Más detalles

EJERCICIOS INTERES COMPUESTO

EJERCICIOS INTERES COMPUESTO EJERCICIOS INTERES COMPUESTO Nº1.- Una persona pide prestada la cantidad de $800. Cinco años después devuelve $1.020. Determine la tasa de interés nominal anual que se le aplicó, si el interés es: a) Simple

Más detalles

3.7. FONDOS DE AMORTIZACIONES

3.7. FONDOS DE AMORTIZACIONES 1 BIBLIOTECA VIRTUAL de Derecho, Economía y Ciencias Sociales ADMINISTRACIÓN FINANCIERA I Arturo García Santillán 3.7. FONDOS DE AMORTIZACIONES 3.7.1. CONCEPTOS BÁSICOS Habiendo estudiado las amortizaciones

Más detalles

TEMA 8: RENTAS CONSTANTES, TEMPORALES Y PERPETUAS FRACCIONADAS 1.- RENTAS FRACCIONADAS

TEMA 8: RENTAS CONSTANTES, TEMPORALES Y PERPETUAS FRACCIONADAS 1.- RENTAS FRACCIONADAS TEMA 8: RENTAS CONSTANTES, TEMPORALES Y PERPETUAS FRACCIONADAS 1.- RENTAS FRACCIONADAS Las rentas fraccionadas son aquellas en las que la periodicidad con que se hacen efectivos los sucesivos capitales

Más detalles

GESTIÓN FINANCIERA RENTAS FINANCIERAS

GESTIÓN FINANCIERA RENTAS FINANCIERAS GESTIÓN FINANCIERA RENTAS FINANCIERAS Hasta ahora las operaciones financieras que venimos realizando se componían de un capital único (o pocos) tanto en la prestación como en la contraprestación. Sin embargo,

Más detalles

PRACTICA DE INTERES COMPUESTO. 1) Se tiene un capital de Bs sometido a una tasa de interés del 28% anual.

PRACTICA DE INTERES COMPUESTO. 1) Se tiene un capital de Bs sometido a una tasa de interés del 28% anual. CAPITALIZACIÓN ANUAL: PRACTICA DE INTERES COMPUESTO 1) Se tiene un capital de Bs. 6.000 sometido a una tasa de interés del 28% anual. a) El monto al cabo de 12 años. b) Los intereses del 1ro., 4to. y 9vo.

Más detalles

PROBLEMAS PARA RESOLVER EN CLASE TEMA 5: CAPITALIZACIÓN COMPUESTA

PROBLEMAS PARA RESOLVER EN CLASE TEMA 5: CAPITALIZACIÓN COMPUESTA PROBLEMAS PARA RESOLVER EN CLASE TEMA 5: CAPITALIZACIÓN COMPUESTA 1. Se coloca un capital de 100 euros durante 5 años al 6% anual compuesto. Transcurridos 2 años la entidad financiera nos comunica una

Más detalles

MATEMATICAS APLICADAS CLASE 6

MATEMATICAS APLICADAS CLASE 6 MATEMATICAS APLICADAS CLASE 6 COMENTARIOS DE AMENAZA DE GUERRA EUA NORCOREA IMPACTOS FINANCIEROS ANUALIDADES VENCIDAS VALOR PRESENTE Ejemplo: Una empresa desea construir una fábrica, por lo cual adquiere

Más detalles

Curso MATEMÁTICAS FINANCIERAS Capitulo 5. Carlos Mario Morales C 2009

Curso MATEMÁTICAS FINANCIERAS Capitulo 5. Carlos Mario Morales C 2009 Curso MATEMÁTICAS FINANCIERAS Capitulo 5 Contenido Capitulo 5 Anualidades ordinarias y anticipadas Anualidad Valor final de una anualidad Valor presente de una anualidad Anualidades anticipadas Amortización;

Más detalles

APUNTES DE MATEMÁTICAS FINANCIERAS.

APUNTES DE MATEMÁTICAS FINANCIERAS. APUNTES DE MATEMÁTICAS FINANCIERAS. Prof. Luis Jaime Sarmiento Andrea Sierra Mejia. Departamento De Ciencias Básicas, Unidades Tecnológicas de Santander. Apuntes del docente 2013 Contenido Introducción...

Más detalles

DIPLOMADO EN FINANZAS CORPORATIVAS MATEMÁTICAS FINANCIERAS Y PORTAFOLIOS

DIPLOMADO EN FINANZAS CORPORATIVAS MATEMÁTICAS FINANCIERAS Y PORTAFOLIOS DIPLOMADO EN FINANZAS CORPORATIVAS MATEMÁTICAS FINANCIERAS Y PORTAFOLIOS Por: Gelacio Martín Sánchez OCTUBRE 27, 2012 2. ANUALIDADES CONTENIDO 2.1 DEFINICIÓN DE ANUALIDADES 2.2 ANUALIDADES VENCIDAS 2.3

Más detalles

NOCIONES DE MATEMÁTICAS FINANCIERAS

NOCIONES DE MATEMÁTICAS FINANCIERAS NOCIONES DE MATEMÁTICAS FINANCIERAS PEDRO PABLO CÁRDENAS ALZATE Profesor Facultad de Ingeniería y Ciencias Básicas Fundación Universitaria del Área Andina Profesor Universidad Tecnológica de Pereira LUZ

Más detalles

MATEMATICAS FINANCIERAS TALLER FINAL

MATEMATICAS FINANCIERAS TALLER FINAL 1. Hallar el valor equivalente de un monto de $94 000.000 en 450 días suponiendo una tasa de interés bancaria del 12% ES. Respuesta: El valor equivalente de 94 millones es 2. Qué capital se debe ahorrar

Más detalles

Universidad Politécnica de Nicaragua. UPOLI RUR Estelí. Sirviendo a la Comunidad

Universidad Politécnica de Nicaragua. UPOLI RUR Estelí. Sirviendo a la Comunidad Universidad Politécnica de Nicaragua. UPOLI RUR Estelí. Sirviendo a la Comunidad Documento: Introducción a la Matemática Financiera. Estelí, Abril 2012. MSc. Mauricio Navarro Zeledón. Página 1 Introducción.

Más detalles

Matemática Financiera

Matemática Financiera Matemática Financiera Patricia Kisbye Profesorado en Matemática Facultad de Matemática, Astronomía y Física 2011 Patricia Kisbye (FaMAF) 2011 1 / 70 Presentación de la materia Matemática financiera: ambiente

Más detalles

AHORRO CAJA SUELDO. De acuerdo a nuestro tarifario la tasa de interés fijada para el Ahorro Caja Sueldo son los siguientes:

AHORRO CAJA SUELDO. De acuerdo a nuestro tarifario la tasa de interés fijada para el Ahorro Caja Sueldo son los siguientes: CAJA SUELDO Descripción: Es una cuenta de Ahorro creada para recibir el abono de remuneraciones. Tiene como objetivo captar a personas naturales dependientes que reciben una remuneración mensual de su

Más detalles

UNIDADES TECNOLÓGICAS DE SANTANDER GUÍA DE ESTUDIO No. 1

UNIDADES TECNOLÓGICAS DE SANTANDER GUÍA DE ESTUDIO No. 1 fe UNIDAD ACADÉMICA UNIDAD TEMÁTICA DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA: MATEMATICAS FINANCIERAS COSTO DEL DINERO COMPETENCIA 1. Analizar las teorías y conceptos del valor del dinero en el tiempo,

Más detalles

TEMA 7: RENTAS CONSTANTES, ANUALES, TEMPORALES Y PERPETUAS 1.- INTRODUCCIÓN

TEMA 7: RENTAS CONSTANTES, ANUALES, TEMPORALES Y PERPETUAS 1.- INTRODUCCIÓN TEMA 7: RENTAS CONSTANTES, ANUALES, TEMPORALES Y PERPETUAS.- INTRODUCCIÓN..- CONCEPTO DE RENTA: Una renta es un conjunto de capitales financieros convencimientos equidistantes de tiempo. El concepto de

Más detalles

TEMA INTRODUCCION A LAS RENTAS. LAS RENTAS CONSTANTES.

TEMA INTRODUCCION A LAS RENTAS. LAS RENTAS CONSTANTES. TEMA INTRODUCCION A LAS RENTAS. LAS RENTAS CONSTANTES. 1.- CONCEPTO DE RENTA, IMPORTANCIA DE SU ESTUDIO Y EJEMPLOS. Se entiende por renta, el cobro o el pago periódico, motivado por el uso de un capital.

Más detalles

UNIDAD IV. ANUALIDADES 4.1. Definición y clasificación de las anualidades. Criterio Tipo Descripción Tiempo (fecha de inicio y fin) Ciertas

UNIDAD IV. ANUALIDADES 4.1. Definición y clasificación de las anualidades. Criterio Tipo Descripción Tiempo (fecha de inicio y fin) Ciertas UNIDAD IV. ANUALIDADES 4.1. Definición y clasificación de las anualidades Anualidad: conjunto de pagos iguales realizados a intervalos iguales de tiempo. No necesariamente se refiere a periodos anuales,

Más detalles

CAPITALIZACIÓN SIMPLE

CAPITALIZACIÓN SIMPLE CAPITALIZACIÓN SIMPLE 1. Calculénse el interés y el capital final resultantes de invertir 10.000 euros durante tres años a un tipo de interés anual del 5% en capitalización simple. Interés: I = C i n Capital

Más detalles

GUÍA NÚMERO 1 EL VALOR DEL DINERO EN EL TIEMPO

GUÍA NÚMERO 1 EL VALOR DEL DINERO EN EL TIEMPO GUÍA NÚMERO 1 EL VALOR DEL DINERO EN EL TIEMPO Material elaborado por José Ignacio Andrés Pérez Hidalgo Cátedra: Dirección Financiera Más información: joseignacioph.wordpress.com INTERÉS SIMPLE 1. Javier

Más detalles

El dinero proporciona algo de felicidad. Pero a partir de cierto momento el dinero sólo proporciona más dinero

El dinero proporciona algo de felicidad. Pero a partir de cierto momento el dinero sólo proporciona más dinero Anualidades Vencidas, Anticipadas y Diferidas. El dinero proporciona algo de felicidad. Pero a partir de cierto momento el dinero sólo proporciona más dinero Neil Simon. Objetivo de la sesión: Conocer

Más detalles

Universidad Nacional Abierta Matemática III (734) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha:

Universidad Nacional Abierta Matemática III (734) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha: Segunda Prueba Integral Lapso 2 009-2 734-1/5 Universidad Nacional Abierta Matemática III (734) Vicerrectorado Académico Cód. Carrera: 610-612 - 613 Fecha: 12-12 - 2 009 MODELO DE RESPUESTAS Objetivos

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemáticas Financieras Notas de Clase -2011 Carlos Mario Morales C 2 Unidad de Aprendizaje Interés Compuesto Contenido Introducción 1. Concepto de interés compuesto 2. Modelo de Interés compuesto 3. Tasa

Más detalles

Lista de problemas de Matemática Financiera (Temas 1 y 2) Leyes de interés y descuento

Lista de problemas de Matemática Financiera (Temas 1 y 2) Leyes de interés y descuento MÉTODOS MATEMÁTICOS DE LA ECONOMÍA (2008 2009) LICENCIATURAS EN ECONOMÍA Y ADE - DERECHO Lista de problemas de Matemática Financiera (Temas 1 y 2) Leyes de interés y descuento 1. Se considera la ley de

Más detalles

TEMA 12: OPERACIONES FINANCIERAS

TEMA 12: OPERACIONES FINANCIERAS TEMA 12: OPERACIONES FINANCIERAS 1. OPERACIONES FINANCIERAS Son aquellas operaciones en las que inversores y ahorradores se ponen de acuerdo y pactan un tipo de interés y un plazo que cubran sus necesidades

Más detalles

PARTE 1 OPERACIONES FINANCIERAS A INTERÉS SIMPLE T E M A S. Aplicación: Títulos de deuda del gobierno mexicano y del sector privado que se venden con

PARTE 1 OPERACIONES FINANCIERAS A INTERÉS SIMPLE T E M A S. Aplicación: Títulos de deuda del gobierno mexicano y del sector privado que se venden con PARTE 1 OPERACIONES FINANCIERAS A INTERÉS SIMPLE T E M A S Factores básicos de las operaciones financieras Operaciones a interés simple Convenciones sobre la medición del tiempo Valor presente y valor

Más detalles

Presentación. Matemáticas Financieras Semana Problema. Objeto: Objetivo: Sistema de Conocimientos. 1 Carlos Mario Morales C

Presentación. Matemáticas Financieras Semana Problema. Objeto: Objetivo: Sistema de Conocimientos. 1 Carlos Mario Morales C Presentación Problema Las empresas para el manejo del dinero como recurso fundamental requieren de profesiones capaces de manejar el dinero de una manera óptima con el fin de asegurar la creación de valor

Más detalles

ECUACIONES DE VALOR $2.00 $2.50 $3.00 $3.50 DIC.98 ABRIL 99 OCT. 99 MAR.2000

ECUACIONES DE VALOR $2.00 $2.50 $3.00 $3.50 DIC.98 ABRIL 99 OCT. 99 MAR.2000 5. INTERÉS COMPUESTO 5.1. Ecuación del monto 5.2. Fecha de vencimiento promedio o equivalente ECUACIONES DE VALOR Para poder entender lo que son las ecuaciones de valor, para que nos sirven y cómo entenderlas,

Más detalles

UNIDADES TECNOLÓGICAS DE SANTANDER GUÍA DE ESTUDIO No. 1

UNIDADES TECNOLÓGICAS DE SANTANDER GUÍA DE ESTUDIO No. 1 IDENTIFICACIÓN UNIDAD ACADÉMICA TECNOLOGIA EN CONTABILIDAD FINANCIERA ASIGNATURA: ELECTIVA DE PROFUNDIZACION-TALLER FINANCIERO UNIDAD TEMÁTICA COSTO DEL DINERO COMPETENCIA El estudiante: RESULTADOS DE

Más detalles

Glosario de términos. Introducción a las Matemáticas Financieras

Glosario de términos. Introducción a las Matemáticas Financieras Introducción a las Matemáticas Financieras Carlos Mario Morales C 2012 1 Anualidades y gradientes UNIDAD 3: ANUALIDADES Y GRADIENTES OBJETIVO Al finalizar la unidad los estudiantes estarán en capacidad

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: MADRID C/ Gral. Ampudia, 6 Teléf.: 9 33 38 2-9 3 9 32 283 MADRID EXAMEN MATEMATICAS FINANCIERAS CEU 3 de MAYO del 28 PRIMERA PREGUNTA (3 puntos Contestar las siguientes cuestiones: a Un banco nos ofrece invertir

Más detalles

Capítulo 1 Conceptos básicos

Capítulo 1 Conceptos básicos Capítulo 1 Conceptos básicos Introducción Las matemáticas financieras son una rama de las matemáticas aplicadas cuyo objetivo es estudiar el valor del dinero en el tiempo, para lo cual emplea técnicas,

Más detalles

... 8. INTERES SIMPLE

... 8. INTERES SIMPLE 1 8. INTERES SIMPLE 8.1 Conceptos Básicos Interés El interés es el rédito o excedente generado, por una colocación de dinero, a una tasa de interés y un determinado periodo de tiempo y este puede ser simple

Más detalles

Ejercicios y problemas

Ejercicios y problemas 1. Porcentajes 27. A un televisor que cuesta 50 le hacen una rebaja del 20%. Cuál es el precio final de la televisión? Precio final = 50 0,8 = 28. A un artículo le han aplicado un 15% de descuento y queda

Más detalles

[5.1] Cómo estudiar este tema? [5.5] Modelos de rentas más usuales. [5.6] Operaciones de constitución de un capital

[5.1] Cómo estudiar este tema? [5.5] Modelos de rentas más usuales. [5.6] Operaciones de constitución de un capital Rentas financieras [5.1] Cómo estudiar este tema? [5.2] Concepto de renta [5.3] Clasificación de una renta [5.4] Valor de una renta [5.5] Modelos de rentas más usuales [5.6] Operaciones de constitución

Más detalles

Gestión Financiera. 6 > Rentas fraccionadas y variables

Gestión Financiera. 6 > Rentas fraccionadas y variables . 6 > Rentas fraccionadas y variables Juan Carlos Mira Navarro Juan Carlos Mira Navarro 1 / 54. 6 > Rentas fraccionadas y variables 1 2 Rentas fraccionadas, diferidas y anticipadas Ecuación geneal de las

Más detalles

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math.

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math. NTERES OMPUESTO. inancial math. OBJETVOS Al finalizar el estudio del capítulo, el lector será capaz de: 1. Explicar y definir el interés compuesto y su subdivisión 2. omparar y diferenciar el interés simple

Más detalles

Capítulo 4 Ecuación de valor

Capítulo 4 Ecuación de valor Capítulo 4 Ecuación de valor Introducción En la práctica no es común que las transacciones financieras se pacten con sólo dos desembolsos: uno al inicio de la operación y otro al final del plazo convenido.

Más detalles

Manual de Matemáticas Financiera

Manual de Matemáticas Financiera Manual de Matemáticas Financiera Matemáticas financieras, dirigido tanto a estudiantes universitarios como a profesionales del sector financiero, que estén interesados en conseguir una base de conocimiento

Más detalles

Unidad 4. Capitalización compuesta y descuento compuesto

Unidad 4. Capitalización compuesta y descuento compuesto Unidad 4. Capitalización compuesta y descuento compuesto 0. ÍNDICE. 1. CAPITALIZACIÓN COMPUESTA. 1.1. Concepto. 1.2. Cálculo de los intereses totales y del interés de un período s. 1.3. Cálculo del capital

Más detalles

UNIVERSIDAD POLITÉCNICA SALESIANA CARRERA DE INGENIERÍA EN GERENCIA Y LIDERAZGO PRUEBA 1 DE MATEMÁTICA FINANCIERA PRIMER INTERCICLO PERIODO 46

UNIVERSIDAD POLITÉCNICA SALESIANA CARRERA DE INGENIERÍA EN GERENCIA Y LIDERAZGO PRUEBA 1 DE MATEMÁTICA FINANCIERA PRIMER INTERCICLO PERIODO 46 UNIVERSIDAD POLITÉCNICA SALESIANA CARRERA DE INGENIERÍA EN GERENCIA Y LIDERAZGO PRUEBA 1 DE MATEMÁTICA FINANCIERA PRIMER INTERCICLO PERIODO 46 NOMBRE:... FECHA: NIVEL:... PROF. René Quezada C. INSTRUCCIONES

Más detalles

Gestión Financiera. 5 > Rentas financieras

Gestión Financiera. 5 > Rentas financieras . 5 > Rentas financieras Juan Carlos Mira Navarro Juan Carlos Mira Navarro 1 / 57. 5 > Rentas financieras 1 2 3 4 5 6 7 8 9 10 11 Juan Carlos Mira Navarro 2 / 57. 5 > Rentas financieras 1 2 3 4 5 6 7 8

Más detalles

ANUALIDADES VENCIDAS

ANUALIDADES VENCIDAS SESION 10 5.3. Anualidades 5.4. Amortización ANUALIDADES VENCIDAS Al comprar ciertos artículos no siempres se pueden pagar de contado, por lo que es muy común rel uso de créditos, ya sea mediante bancos

Más detalles

El interés simple es el que se calcula sobre el capital inicial, el cual permanecerá invariable durante todo el tiempo que dure la inversión:

El interés simple es el que se calcula sobre el capital inicial, el cual permanecerá invariable durante todo el tiempo que dure la inversión: El interés es la cantidad que se paga o se cobra (según sea el caso) por el uso del dinero; cuando se calcula el interés se deben considerar tres factores: Capital, tasa de interés y tiempo. El capital

Más detalles

TEMA N 1. INTERES SIMPLE Y COMPUESTO. Conceptos Básicos: Antes de iniciar el tema es necesario conocer los siguientes términos:

TEMA N 1. INTERES SIMPLE Y COMPUESTO. Conceptos Básicos: Antes de iniciar el tema es necesario conocer los siguientes términos: TEMA N 1. INTERES SIMPLE Y COMPUESTO Conceptos Básicos: Antes de iniciar el tema es necesario conocer los siguientes términos: Capitalización: Es aquella entidad financiera mediante la cual los intereses

Más detalles

( )( ) UNIDAD III. INTERÉS COMPUESTO 3.1. Introducción y conceptos básicos. Periodo de capitalización

( )( ) UNIDAD III. INTERÉS COMPUESTO 3.1. Introducción y conceptos básicos. Periodo de capitalización UNIDAD III. INTERÉS COMPUESTO 3.1. Introducción y conceptos básicos Si un capital C al terminar un periodo de inversión (por ejemplo un año) genera un monto M; no se retira entonces al segundo periodo

Más detalles

TEMA 6. OpenCourseWare RENTAS FINANCIERAS

TEMA 6. OpenCourseWare RENTAS FINANCIERAS TEMA 6 RENTAS FINANCIERAS 6.1. Concepto de Renta Financiera 6.2. Clasificación Rentas 6.3. Rentas Constantes: Inmediatas, Diferidas, Anticipadas 6.4. Rentas Variables 6.5. Rentas Fraccionadas 1 Concepto

Más detalles

Curso Matemáticas Financieras Capitulo 7. Carlos Mario Morales C 2009

Curso Matemáticas Financieras Capitulo 7. Carlos Mario Morales C 2009 Curso Matemáticas Capitulo 7 Contenido Capitulo 7 Concepto de amortización Amortización con cuotas extras pactadas Amortización con cuotas extras no pactadas Amortización con periodos de gracia Distribución

Más detalles

( ) -n i. Entonces el valor presente de los pagos mensuales vencidos se calculan con la ecuación: UNIDAD IV. ANUALIDADES Anualidades diferidas

( ) -n i. Entonces el valor presente de los pagos mensuales vencidos se calculan con la ecuación: UNIDAD IV. ANUALIDADES Anualidades diferidas 4.5. Anualidades diferidas UNIDAD IV. ANUALIDADES Las anualidades diferidas son aquellas en los que el inicio de los pagos periódicos se pospone para un tiempo posterior a la formalización de la operación.

Más detalles

MATEMATICAS FINANCIERAS LECCION 1

MATEMATICAS FINANCIERAS LECCION 1 MATEMATICAS FINANCIERAS LECCION 1 1. EL INTERES El diccionario de la Real Academia Española, define el interés como lucro producido por el capital. Algunos autores lo definen de diversas maneras como:

Más detalles

MATEMÁTICA FINANCIERA

MATEMÁTICA FINANCIERA MATEMÁTICA FINANCIERA Descuento El descuento es un tipo de financiamiento respaldado en título valores: letras de cambio y pagarés. Cualquier cliente de un banco que tiene letras por cobrar que no se han

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemáticas Financieras 1 Sesión No. 5 Nombre: Interés Compuesto Contextualización En las estrategias del ahorro o solicitud de crédito, cada cliente puede decidir entre hacer un trato con interés simple

Más detalles

Tarea Final. Valor del dinero a través del tiempo Ejercicios

Tarea Final. Valor del dinero a través del tiempo Ejercicios Materia: Economía División Ingeniería Maestro: Lic. César Octavio Contreras Tovías Tarea Final Valor del dinero a través del tiempo Ejercicios 1. El señor Martínez pide prestado al Banco la cantidad de

Más detalles

Capítulo 3 Interés compuesto

Capítulo 3 Interés compuesto Capítulo 3 Interés compuesto Introducción Cuando un banco o cualquier otra institución financiera aumentan el número de periodos en el año en los que pagan intereses, el capital aumenta más rápidamente

Más detalles

Unidad 2. Interés simple

Unidad 2. Interés simple Unidad 2. Interés simple 0. ÍNDICE. 1. CONCEPTO DE CAPITALIZACIÓN SIMPLE. 2. EL MONTANTE. 3. TANTOS EQUIVALENTES. 10. MÉTODOS ABREVIADOS PARA EL CÁLCULO DE LOS INTERESES. 11. INTERESES ANTICIPADOS. ACTIVIDADES

Más detalles

FÓRMULA PARA LA LIQUIDACIÓN DE INTERESES Y PAGOS PARA PRÉSTAMOS NUEVO MI VIVIENDA

FÓRMULA PARA LA LIQUIDACIÓN DE INTERESES Y PAGOS PARA PRÉSTAMOS NUEVO MI VIVIENDA FÓRMULA PARA LA LIQUIDACIÓN DE INTERESES Y PAGOS PARA PRÉSTAMOS NUEVO MI VIVIENDA Antes de calcular el valor de una cuota para un período determinado es conveniente definir los siguientes términos: Monto

Más detalles

El interés y el dinero

El interés y el dinero El interés y el dinero El concepto de interés tiene que ver con el precio del dinero. Si alguien pide un préstamo debe pagar un cierto interés por ese dinero. Y si alguien deposita dinero en un banco,

Más detalles

Operaciones Bancarias y Financieras Unidad 3. Operaciones de Crédito Activas (Financiamiento)

Operaciones Bancarias y Financieras Unidad 3. Operaciones de Crédito Activas (Financiamiento) Operaciones Bancarias y Financieras Unidad 3. Operaciones de Crédito Activas (Financiamiento) Dr. José Luis Esparza A. OPERACIONES BANCARIAS El negocio de los bancos no se limita exclusivamente a la función

Más detalles

El descuento bancario o comercial es el interés del valor nominal, y se determina mediante el interés entre el vencimiento de la deuda y la fecha de

El descuento bancario o comercial es el interés del valor nominal, y se determina mediante el interés entre el vencimiento de la deuda y la fecha de El descuento bancario o comercial es el interés del valor nominal, y se determina mediante el interés entre el vencimiento de la deuda y la fecha de descuento a cierta tasa, valuada ésta sobre el valor

Más detalles

CAPÍTULO II INTRODUCCION A LA MATEMÁTICA FINANCIERA EN LA GESTIÓN

CAPÍTULO II INTRODUCCION A LA MATEMÁTICA FINANCIERA EN LA GESTIÓN CAPÍTULO II INTRODUCCION A LA MATEMÁTICA FINANCIERA EN LA GESTIÓN Introducción. En la bibliografía dreferida a la matemática financiera el primer término que aparece es el de "Capital financiero". Se entiende

Más detalles

El VALOR DEL DINERO EN EL TIEMPO

El VALOR DEL DINERO EN EL TIEMPO El VALOR DEL DINERO EN EL TIEMPO "Si quieres saber el valor del dinero, trata de conseguirlo prestado." Puesto que vemos a la empresa como un negocio en marcha, evaluamos las decisiones de sus administradores

Más detalles

Conocer los tipos de bonos, sus características e importancia como instrumento de deuda para las corporaciones y los gobiernos.

Conocer los tipos de bonos, sus características e importancia como instrumento de deuda para las corporaciones y los gobiernos. Apuntes de clases Prof. Freddy Lara Bonos Objetivo general Conocer los tipos de bonos, sus características e importancia como instrumento de deuda para las corporaciones y los gobiernos. Objetivos especificos

Más detalles

1. El 5to. término de una progresión aritmética es 7 y el 7mo. término es 8 1/3. Hallar el 1er. término.

1. El 5to. término de una progresión aritmética es 7 y el 7mo. término es 8 1/3. Hallar el 1er. término. 1. El 5to. término de una progresión aritmética es 7 y el 7mo. término es 8 1/3. Hallar el 1er. término. 2. Hallar el 8vo. Término de la siguiente progresión geométrica: 6: 4:. 3. La razón de una progresión

Más detalles

Matemática Financiera para No Financieros

Matemática Financiera para No Financieros Matemática Financiera para No Financieros Brígida Jara L, Mónica Vargas J, Alexandra Solórzano G Universidad Técnica de Machala Matemática Financiera para no Financieros Ing. César Quezada Abad, MBA Rector

Más detalles

MATEMÁTICA FINANCIERA

MATEMÁTICA FINANCIERA MATEMÁTICA FINANCIERA MATE 3086 5 Qué aprenderemos hoy? Conoceras una de las muchas aplicaciones de las matemáticas a la vida real; en éste caso hablaremos del Porcentaje, Interés Simple, Credito Limitado,

Más detalles

Guía de Estudios Matemática Financiera Quinto Bachillerato en Administración Prof. Cristobal Escalante O.

Guía de Estudios Matemática Financiera Quinto Bachillerato en Administración Prof. Cristobal Escalante O. Quinto Bachillerato en Administración Prof. Cristobal Escalante O. Temas a Evaluar 1. Porcentajes 2. Repartición Proporcional a. Directa b. inversa 3. Interés Simple 4. Interés Compuesto a. Monto compuesto

Más detalles

MATEMATICA COMERCIAL

MATEMATICA COMERCIAL Profesor: Ezequiel Roque David Ramírez MATEMATICA COMERCIAL Descripción y objetivos del curso Este tema está dedicado al estudio de conceptos que, con formulación matemática y carácter marcadamente económico,

Más detalles

Matemáticas financieras

Matemáticas financieras Matemáticas financieras MATEMÁTICAS FINANCIERAS 1 Sesión No. 2 Nombre: Fundamentos matemáticos Contextualización Para concluir con la unidad introductoria a las matemáticas financieras, en la que estamos

Más detalles

MODELO DE RESPUESTAS

MODELO DE RESPUESTAS PRIMERA PRUEBA INTEGRAL LAPSO 2 008-2 734-1/5 Universidad Nacional Abierta MATEMÁTICA III ( 734 ) Vicerrectorado Académico Fecha: 25/10/2 008 Cód. Carrera: 610-612 - 613 MODELO DE RESPUESTAS OBJ 1 PTA

Más detalles

Matemáticas Financieras Problemas resueltos Tema 2 GADE-FICO

Matemáticas Financieras Problemas resueltos Tema 2 GADE-FICO (Francisco Begines Begines. Departamento de Economía Aplicada I. Universidad de Sevilla) Matemáticas Financieras Problemas resueltos Tema GADE-FICO. Un grupo de personas estudia la posibilidad de abrir

Más detalles

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ORDINARIAS. 1.Una mina en explotación tiene una producción anual de

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ORDINARIAS. 1.Una mina en explotación tiene una producción anual de PROBLEMAS RESUELTOS DE ANUALIDADES ORDINARIAS 1.Una mina en explotación tiene una producción anual de 600 000 dólares y se calcula que se agotará en 5 años. Cuál es el valor actual de la producción si

Más detalles

CRÉDITO EMPRESARIAL EJEMPLO DE CÁLCULO DE INTERESES, COMISIONES Y GASTOS

CRÉDITO EMPRESARIAL EJEMPLO DE CÁLCULO DE INTERESES, COMISIONES Y GASTOS CRÉDITO EMPRESARIAL EJEMPLO DE CÁLCULO DE INTERESES, COMISIONES Y GASTOS Actualizado al 28 de septiembre de 2016 Importante: El cálculo se realiza sobre la base de 360 días. Las operaciones de desembolso,

Más detalles

Departamento de Auditoría y Sistemas de Información FINANZAS I

Departamento de Auditoría y Sistemas de Información FINANZAS I Departamento de Auditoría y Sistemas de Información FINANZAS I UNIVERSIDAD ARTURO PRAT Santiago - Chile Temario Finanzas I. Valor del dinero en el tiempo. Valor Actual y Valor Futuro. Tasa de Interés Simple.

Más detalles

Años Unidades producidas 1 25, , , ,000

Años Unidades producidas 1 25, , , ,000 1 5.1. Conceptos Depreciación es la pérdida o disminución del valor de un bien, debido a su uso y disfrute u obsolescencia. En el manejo de la depreciación, se deben considerar los siguientes términos

Más detalles

ASIGNATURA TRANSVERSAL DE LA FACULTAD DE CIENCIAS EMPRESARIALES ASIGNATURA: Matemáticas Financieras

ASIGNATURA TRANSVERSAL DE LA FACULTAD DE CIENCIAS EMPRESARIALES ASIGNATURA: Matemáticas Financieras ASIGNATURA TRANSVERSAL DE LA FACULTAD DE CIENCIAS EMPRESARIALES ASIGNATURA: Matemáticas Financieras CORPORACIÓN UNIVERSITARIA REMINGTON DIRECCIÓN PEDAGÓGICA Este material es propiedad de la Corporación

Más detalles

Bloque VI INTERESES, ANUALIDADES Y AMORTIZACIONES

Bloque VI INTERESES, ANUALIDADES Y AMORTIZACIONES Bloque VI INTERESES, ANUALIDADES Y AMORTIZACIONES Bloque 6 VI: Intereses anualidades y amortizaciones A. PRESENTACIÓN Cambia el valor del dinero con el paso del tiempo? http://www.youtube.com/watch?v=na-b70nyh2q

Más detalles

PROBLEMARIO MATEMÁTICAS FINANCIERAS

PROBLEMARIO MATEMÁTICAS FINANCIERAS PROBLEMARIO MATEMÁTICAS FINANCIERAS CONVERSIÓN DE TIEMPOS Realizar las siguientes conversiones: 1. 4 cuatrimestres a meses R.- 16 meses 2. 5 años a trimestres R.- 20 trimestres 3. 12 meses a cuatrimestres

Más detalles

Unidad 3. Equivalencia financiera

Unidad 3. Equivalencia financiera Unidad 3. Equivalencia financiera 0. ÍNDICE. 1. CAPITALES EQUIVALENTES. 2. VENCIMIENTO COMÚN. 3. VENCIMIENTO MEDIO. 3.1. Caso particular del vencimiento medio. 4. CAPITALES EQUIVALENTES EN DESCUENTO RACIONAL.

Más detalles

LECCIÓN Nº 03 y 04 INTERES SIMPLE

LECCIÓN Nº 03 y 04 INTERES SIMPLE LECCIÓN Nº 03 y 04 INTERES SIMPLE OBJETIVO: Enseñar al estudiante los factores que intervienen en el cálculo del interés simple y suministrarle herramientas para una eficiente solución de problemas en

Más detalles

GUÍA DE ORIENTACIÓN. Módulo de Gestión financiera Saber Pro 2015-2

GUÍA DE ORIENTACIÓN. Módulo de Gestión financiera Saber Pro 2015-2 GUÍA DE ORIENTACIÓN Módulo de Gestión financiera Saber Pro 2015-2 TÉRMINOS Y CONDICIONES DE USO PARA PUBLICACIONES Y OBRAS DE PROPIEDAD DEL ICFES El Instituto Colombiano para la Evaluación de la Educación

Más detalles

UNIVERSIDAD TÉCNICA DE MACHALA UNIDAD ACADEMICA DE CIENCIAS EMPRESARIALES CARRERA DE CONTABILIDAD Y AUDITORÍA TITULO

UNIVERSIDAD TÉCNICA DE MACHALA UNIDAD ACADEMICA DE CIENCIAS EMPRESARIALES CARRERA DE CONTABILIDAD Y AUDITORÍA TITULO UNIVERSIDAD TÉCNICA DE MACHALA UNIDAD ACADEMICA DE CIENCIAS EMPRESARIALES CARRERA DE CONTABILIDAD Y AUDITORÍA TITULO EL TIPO DE INTERÉS SELECCIONADO AL MOMENTO DE REALIZAR UNA INVERSIÓN Y SU IMPACTO EN

Más detalles

ESPECIALIZACIÓN GERENCIA DE PROYECTOS Curso: Finanzas del proyecto- Profesor: Carlos Mario Morales C Taller No 2- Solucionado

ESPECIALIZACIÓN GERENCIA DE PROYECTOS Curso: Finanzas del proyecto- Profesor: Carlos Mario Morales C Taller No 2- Solucionado 1. Cuál será la inversión que debe realizar una empresa en un fondo de inversiones para tener el dinero necesario para reponer sus equipos de cómputo dentro de 38 meses? Se estima que los equipos tendrán

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS Programa Unidad I : Fórmulas que involucran intereses. 1.1.- Introducción. 1.2.- Importancia del Interés. 1.3.- Definiciones. 1.4.- Importancia del Tiempo. 1.5.- Tasas de Interés.

Más detalles

Problemas propuestos Capítulo No. 4 Tasas de interés y amortización de deudas

Problemas propuestos Capítulo No. 4 Tasas de interés y amortización de deudas Problemas propuestos Capítulo No. 4 Tasas de interés y amortización de deudas Tasas de interés efectivas o reales 1. Si una persona deposita la suma de $us. 500 al 8% mensual compuesto trimestralmente,

Más detalles

Sea A el pago anual uniforme; P = $ 100,000 o el valor presente que tiene la casa n = 10 pagos; i = 10%.

Sea A el pago anual uniforme; P = $ 100,000 o el valor presente que tiene la casa n = 10 pagos; i = 10%. UNIVERSIDAD NACIONAL DE INGENIERÍA. UNI NORTE. Sede Estelí. Líder en Ciencia y Tecnología Asignatura : Ingeniería económica. Carrera : Ingeniería agroindustrial. Año Académico : IV Año. Unidad No. III

Más detalles

Taller de Finanzas Aplicadas

Taller de Finanzas Aplicadas Taller de Finanzas Aplicadas Contenido Valor del dinero en el tiempo-interés simple y compuesto. Tasas de Interés. Circuito Matemático/Financiero-Fórmulas Claves. Formulas de Calculo Financiero. Modalidades

Más detalles

1 Resolución de ecuaciones de 2º grado y ecuaciones bicuadradas. 4ºESO.

1 Resolución de ecuaciones de 2º grado y ecuaciones bicuadradas. 4ºESO. 1 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación parece,

Más detalles

MATEMATICAS FINANCIERAS CAPITULO 4 ANUALIDADES EJERCICIOS RESUELTOS

MATEMATICAS FINANCIERAS CAPITULO 4 ANUALIDADES EJERCICIOS RESUELTOS 1. Cuando su hijo cumple 12 años, un padre hace un deposito de $X en una fiduciaria con el objeto de asegurar sus estudios universitarios, los cuales iniciará cuando cumpla 20 años. Suponiendo que para

Más detalles

MATEMATICAS FINANCIERAS TEMA 1. CONCEPTOS GENERALES EJERCICIOS PROPUESTOS TEMARIO 1 1) Una inversión realizada hoy por $ 1.200.000 genera al final de

MATEMATICAS FINANCIERAS TEMA 1. CONCEPTOS GENERALES EJERCICIOS PROPUESTOS TEMARIO 1 1) Una inversión realizada hoy por $ 1.200.000 genera al final de MATEMATICAS FINANCIERAS TEMA 1. CONCEPTOS GENERALES EJERCICIOS PROPUESTOS TEMARIO 1 1) Una inversión realizada hoy por $ 1.200.000 genera al final de un año la suma de $1.536.000. Se pide: a) La suma ganada

Más detalles

La Capitalización con una Tasa de Interés Compuesta. La capitalización con interés compuesto, a diferencia del caso del

La Capitalización con una Tasa de Interés Compuesta. La capitalización con interés compuesto, a diferencia del caso del La Capitalización con una Tasa de nterés Compuesta La capitalización con interés compuesto, a diferencia del caso del interés simple, se caracteriza porque ocasiona que el valor futuro de un capital aumente

Más detalles

COSTO DE CAPITAL. Tema 3.1 Costo de capital y CPPC. Licenciatura en Economía y Finanzas 7º semestre. Dr. José Luis Esparza A. JLEA

COSTO DE CAPITAL. Tema 3.1 Costo de capital y CPPC. Licenciatura en Economía y Finanzas 7º semestre. Dr. José Luis Esparza A. JLEA COSTO DE CAPITAL Tema 3.1 Costo de capital y CPPC JLEA Licenciatura en Economía y Finanzas 7º semestre. Dr. José Luis Esparza A. EL COSTO DE CAPITAL JLEA Cuando un individuo no tiene dinero para llevar

Más detalles

Juan Antonio Flórez Uribe

Juan Antonio Flórez Uribe Juan Antonio Flórez Uribe Administrador de empresas de la Universidad Externado de Colombia, con estudios sobre Promoción Industrial en ciudades intermedias de la Universidad de los Andes. Tiene más de

Más detalles

EJERCICIOS SOBRE ANUALIDADES

EJERCICIOS SOBRE ANUALIDADES UNIVERSIDAD DE LOS ANDES TÁCHIRA Dr PEDRO RINCÓN GUTIERREZ DEPARTAMENTO DE CIENCIAS EJERCICIOS SOBRE ANUALIDADES 1. Se depositan $ 150 pesos al final de cada mes en un banco que paga el 3 % mensual capitalizable

Más detalles

CARATULA POLIZA DE SEGURO DE VIDA TEMPORAL

CARATULA POLIZA DE SEGURO DE VIDA TEMPORAL CARATULA POLIZA DE SEGURO DE VIDA TEMPORAL POLIZA No. FECHA INICIO VIGENCIA FECHA VENCIMIENTO SUMA ASEGURADA BASICA ASEGURADO DOMICILIO DEL ASEGURADO EDAD MONEDA CONTRATADA PRIMAS TOTALES FECHA ULTIMO

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID EXAMEN MATEMATICAS FINANCIERAS ICADE SEPTIEMBRE 2007 PRIMERA PREGUNTA (1 punto) Razonar qué sería preferible para una operación de inversión: - Un tanto nominal del 6%, capitalizable por meses - Un tanto

Más detalles

4. Matemática financiera.

4. Matemática financiera. 4. Matemática financiera. Autora: Maite Seco Benedicto MATEMÁTICAS FINANCIERAS BÁSICAS Las Matemáticas financieras son una herramienta imprescindible para poder valorar las operaciones financieras, tanto

Más detalles