100% - (12% + 13%) = 75% de alumnos pasan con todo aprobado 75% de 524 = 0, = 393 alumnos han pasado con todas las materias aprobadas.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "100% - (12% + 13%) = 75% de alumnos pasan con todo aprobado 75% de 524 = 0,75 524 = 393 alumnos han pasado con todas las materias aprobadas."

Transcripción

1 Números racionales 1 PORCENTAJES o Un porcentaje es equivalente a una fracción con denominador y al número decimal correspondiente a la fracción % = = 0,65 o Para calcular el porcentaje de una cantidad se multiplica la cantidad por la fracción o por el número decimal equivalente al porcentaje % de 840 = 840 = 0, El número por el cual hay que multiplicar la cantidad inicial para obtener la final se llama índice de variación. 1.- Calcula: a) El 24% de 300 b) El 112% de 560 c) El 3% de d) El 30% de 8500 e) El 230% de 5200 f) El 300% de 40 a) El 24% de 300 = = 72 b) El 112% de 560 = = 627,2 c) El 3% de = = 2496 d) El 30% de 8500 = = 2550 e) El 230% de 5200 = = f) El 300% de 40 = 3 40 = De los 524 alumnos de bachillerato de un colegio, el 12% repite curso y el 13% ha pasado con alguna materia pendiente. Cuántos alumnos han pasado con todas las materias aprobadas? % - (12% + 13%) = 75% de alumnos pasan con todo aprobado 75% de 524 = 0, = 393 alumnos han pasado con todas las materias aprobadas. 3.- Un camión de reparto ha entregado por la mañana los 13/20 de la carga que llevaba y, por la tarde, el 17,3 % de la misma. Qué fracción de la carga queda por repartir? ,3 = = 17,3 52 % = = Queda por repartir: 1 = de la carga

2 Números racionales 2 CÁLCULO DEL PORCENTAJE o Para hallar qué tanto por ciento representa una cierta cantidad respecto de un total, dividimos la parte entre el total y multiplicamos por. En una clase de 30 alumnos y alumnas, hoy han faltado 6. Cuál ha sido el tanto por ciento de ausencias? 6 = 20 % Calcula el tanto por ciento que representa: a) 45 respecto a 225 b) 6160 respecto a c) 4230 respecto a 9000 d) 1922 respecto a 1240 e) 6000 respecto a 4000 f) 975 respecto a a) 45 respecto a = 0,2 = 20% 225 b) 6160 respecto a = 0,11 = 11% c) 4230 respecto a = 0, 47 = 47% 9000 d) 1922 respecto a = 1,55 = 155% 1240 e) 6000 respecto a = 1,5 = 150% 4000 f) 975 respecto a = 0,03 = 3% Entre julio y agosto de 2006, el número de infracciones graves que denunció la Dirección General de Tráfico fueron de las que correspondieron a hombres. Qué porcentaje de denuncias correspondieron a mujeres? = ,1137 = 11,37% El número de plazas de un centro escolar es 450. Si el número de plazas solicitadas fue 540, qué tanto por ciento representan las solicitudes? 540 : 450 = 1,2 El 120%.

3 Números racionales 3 CÁLCULO DE LA CANTIDAD INICIAL o Para hallarla cantidad inicial dividimos la cantidad final por el índice de variación. X (INDICE DE VARIACIÓN CANTIDAD INICIAL CANTIDAD FINAL Un hospital tiene 210 camas ocupadas, lo que supone el 84% del total. De cuántas camas dispone el hospital? 84% = 0, : 0,84 = 250 camas : (INDICE DE VARIACIÓN 1.- Un cartero ha repartido el 36% de las cartas que tenía. Aún le quedan Cuántas tenía antes de empezar el reparto? Si ha repartido el 36%, le quedan el 64% de las cartas, es decir: 64% de x = ,64 x = 1184 x = 1184 : 0,64 = cartas. 2.- La información nutricional de una marca de leche dice que, en un litro, hay 160 mg de calcio, que es el 20% de la cantidad diaria recomendada. Calcula la cantidad diaria que debe tomar una persona. 160 mg de calcio = 20% de la cantidad recomendada. 160 : 0,20 = 800 mg es lo que debe tomar una persona. 3.- Los organizadores de un concierto han decidido suspenderlo porque solo se han vendido el 0,8% de las entradas disponibles. Cuántas entradas se han puesto a la venta si solo se han vendido 20? 0,8% de las entradas = 20 Nº de entradas = 20 : 0,008 = entradas.

4 Números racionales 4 DESCUENTOS PORCENTUALES La cantidad rebajada se obtiene restando el porcentaje de descuento a la cantidad inicial. Una moto cuesta Cuánto habrá que pagar si nos descuentan el 15%? 1ª forma: Calculamos el descuento: 15% de 2700 = 0, = 405. Calculamos el precio rebajado: = ª forma Para calcular directamente la cantidad final después de aplicar un descuento se procede así: 1º.- Se resta a % el porcentaje de descuento: % - 15% = 85% 2º.- Se aplica a la cantidad inicial el porcentaje obtenido: 85% de = ,85 = Habrá que pagar Si observas para calcular la cantidad final hemos multiplicado la cantidad inicial por un número decimal: CANTIDAD FINAL = CANTIDAD INICIAL (1 descuento porcentual expresado en forma decimal) 1.- En una comunidad autónoma había parados. Han disminuido un 15%. Cuántos parados hay ahora? Si disminuye un 15%, habrá sólo un 85% de los parados iniciales. 85% de = 0, = parados Sol: Hay ahora parados 2.- En unas rebajas en las que se hace el 30% de descuento, Roberto ha comprado una cámara fotográfica por 50,4. Cuál era su precio inicial? Si le descuenta un 30%, paga un 70% del precio inicial. Su precio era 70% de x = 50,40 0,7 x = 50,40 x = 50,40 : 0,70 = En una papelería hacen una rebaja del 15% en todos los artículos. Cuál será el precio que hemos de pagar por una cartera de 24 y una calculadora de 18? Cartera: 85% de 24 = 24 0,85 = 20,4 Calculadora: 85% de 18 = 18 0,85 = 15,3 4.- He pagado 187,2 por un billete de avión que costaba 240. Qué porcentaje de descuento me hicieron? 187,2 : 240 = 0,78 Cuesta un 78% de su precio inicial Descuento: 22% 5.- Para que el área de un triángulo fuera m 2, su altura actual tendría que disminuir un 18%. Si la base mide 16,8 m, cuánto mide la altura? A = m = 1,68 a a = 11,9 m La altura tendría que medir 11,9 m para que el área fuera m 2. 82% de la altura = 11,9 altura = 11,9 : 0,82 = 14,5 m

5 Números racionales 5 AUMENTOS PORCENTUALES La cantidad aumentada se obtiene sumando el porcentaje de aumento a la cantidad inicial. Cuánto habrá que pagar si nos recargan el 20% en una factura de 2700? 1ª forma: Calculamos el aumento: 20% de 2700 = 0, = 540. Calculamos el precio rebajado: = ª forma Para calcular directamente la cantidad final después de aplicar un aumento se procede así: 1º.- Se suma a % el porcentaje de aumento: % + 20% = 120% 2º.- Se aplica a la cantidad inicial el porcentaje obtenido: 120% de = ,2 = 3240 Habrá que pagar Si observas para calcular la cantidad final hemos multiplicado la cantidad inicial por un número decimal: CANTIDAD FINAL = CANTIDAD INICIAL (1 + aumento porcentual expresado en forma decimal) 1.- Unas acciones que valían a principios de año 13,70 han subido un 35%. Cuánto valen ahora? Suben un 35% Las acciones valen ahora el 135% de su valor inicial 135% de 13,70 = 1,35 13,7 = 18,495 Sol: Vale ahora 18, El precio con IVA de una batidora es 69,60. Cuál es su precio antes de cargarle el IVA? (El IVA es del 16%) Si se aplica el IVA del 16%, se está pagando un 116% de su precio inicial x (valor a determinar) 116% de x = 69,60 1,16 x = 69,6 Precio inicial = 69,6 : 1,16 = Al estirar una goma elástica, su longitud aumenta un 30% y, en esa posición, mide 104 cm. Cuánto mide sin estirar? Si su longitud aumenta en un 30%, la longitud actual será el 130% de la longitud inicial(sin estirar) 130% de x = 104 1,3 x = 104 x = 104 : 1,3 = 80 cm 4.- He pagado 870 por un artículo que costaba 750 sin IVA. Qué porcentaje de IVA me han aplicado? 870 : 750 = 1,16 El artículo cuesta ahora un 116% de su precio inicial. Me han aplicado un 16%. 5.- Si el precio del abono-transporte de una ciudad subió el 12%, cuál era el precio anterior si ahora cuesta 35,84? 112% del precio anterior = 35,84 Precio anterior: 35,84 : 1,12 = 32

6 Números racionales Un comerciante aumenta el precio de sus productos un 30% y, después, pretendiendo dejarlos al precio inicial, los rebaja un 30%. a) Un ordenador que inicialmente costaba cuánto costará en cada paso del proceso? b) Cuál es la variación porcentual que sufren los artículos respecto al precio inicial? a) Aumenta su precio un 30% Precio = 130% de 0 = 0 1,3 = 1300 Rebaja un 30% Precio = 70% de 1300 = 0, = 910 b) Índice de variación final: 1,3 0,7 = 0,91 Variación porcentual: 1 0,91 = 0,09 Ha bajado un 9% 7.- El precio del kilo de tomates subió un 20% y después bajó un 25%. Si antes costaba 1,80, cuál es el precio actual? Sube un 20% Índice de variación: 1,2 Baja un 25% Índice de variación: 0,75 1,8 1,2 0,75 = 1, El número de espectadores de un concurso de televisión que comenzó en octubre aumentó un 23% en noviembre y disminuyó un 18% en diciembre. Si al terminar diciembre tuvo espectadores, cuántos tenía en el mes de octubre? 1,23 0,82 x = x = personas 9.- Si un comerciante aumenta el precio de sus productos un 25% y, después, los rebaja un 25%, cuál ha sido la variación porcentual que experimentan los artículos respecto al precio inicial? Y si hiciera lo mismo aplicando el 50%? a) 1,25 0,75 = 0, ,9375 = 0,0625 Corresponde a una disminución del 6,25%. b) 1 1,5 0,5 = 0,25 Corresponde a una disminución del 25% Los ingresos mensuales de un negocio han aumentado un 20% y un 30% en los dos meses anteriores. En el mes actual han disminuido un 25% y han sido Cuál ha sido la variación porcentual? Calcula los ingresos del negocio hace tres meses. 1,2 1,3 0,75 = 1,17 Supone un aumento del 17% : 1,17 = ,6 son los ingresos de hace tres meses.

7 Números racionales 7 ACTIVIDADES PROPUESTAS 1.- Las piezas y la mano de obra para reparar un coche costaron 218 euros. Cuál es el importe de la factura si hay que añadir el 16% de IVA? 2.- Un artículo que vale 450 euros aumenta el 15% y después un 10%. Ángel piensa que en realidad ha aumentado el 25%, pero Violeta asegura que no. Comprueba quién tiene razón de los dos. 3.- Una cantidad aumenta un 15% y, después, el resultado un 25%. Cuál ha sido el aumento final? 4.- El precio inicial de una enciclopedia era de 480, y a lo largo del tiempo ha sufrido variaciones. Subió un 10%. Subió un 25%. Bajó un 30%. Cuál es su precio actual? 5.- El 24% de una cantidad es 150. Cuál es dicha cantidad? 6.- Un comerciante anuncia rebajas del 30%. María quiere comprar un traje en cuya etiqueta figura el precio de 850. Qué importe de abonar María? 7.- María compró un pantalón que estaba rebajada un 12% y pagó por ella 150. Cuál era su precio original? 8.- En una población de habitantes, el 68% están contentos con la gestión municipal. Cuántos ciudadanos se sienten satisfechos con el ayuntamiento? 9. - Un abrigo lleva una etiqueta que marca 300,4 euros. En la tienda me hacen un descuento de un 5%. Cuánto dinero me descuentan? Cuánto dinero tengo que pagar? Una tienda de comestibles compra naranjas al por mayor a 0,25 euros el kg. Las vende con un beneficio del 20% sobre el precio de compra. A cuánto vende el kg de naranjas? 11.- Un cerdo da el 85% de su peso en carne. Cuántos kg. de carne da un cerdo de kg. de peso? Y cuánto de desperdicio? 12.- La caña de azúcar da un 12% de su peso en azúcar. Qué peso de azúcar nos proporcionan 351 kg. de caña de azúcar? 13.- Un vendedor compra una televisión en 360 euros y la vende en 900 euros. Qué % se ganó? 14.- Un comerciante compra una bicicleta en 120 euros y la vende en 180 euros. Qué % se ganó? 15.- En un pueblo hay 240 personas jubiladas. Representan el 12% de todos los habitantes del pueblo. Cuántos habitantes tiene el pueblo? 16.- Hemos comprado un televisor, un vídeo y un estéreo, cuyos precios respectivos eran euros, 550 euros y 650 euros. Nos hicieron las siguientes rebajas: el 15% en el televisor, el 6% en el vídeo y el 8% en el estéreo. Cuánto pagamos por su compra? 17.- Antonio ha cargado 150 cajas en la furgoneta, lo que supone el 75 % del total de cajas del almacén. Cuántas cajas había en el almacén?

2Soluciones a los ejercicios y problemas PÁGINA 61

2Soluciones a los ejercicios y problemas PÁGINA 61 PÁGINA 61 Pág. 1 P RACTICA Fracciones y decimales 1 Expresa como un número decimal las siguientes fracciones: 9 1 1 5 1 5 9 6 00 990 9 5 5 1 0,6; 1, ;,8 ; 0,085 9 6 0, 185; 0,5 00 ; 1 0,590 990 Clasifica

Más detalles

Para calcular un porcentaje de una cantidad se multiplica dicha cantidad por el tanto por uno. Tanto por uno TOTAL > PARTE

Para calcular un porcentaje de una cantidad se multiplica dicha cantidad por el tanto por uno. Tanto por uno TOTAL > PARTE PORCENTAJES CÁLCULO DE PORCENTAJES Calcular el 12% de 50 a) El porcentaje como razón Un tanto por ciento es una razón, es decir, un cociente entre dos cantidades. (Si el porcentaje viene dado por un número

Más detalles

PÁGINA 19 PARA EMPEZAR. Escribir una fracción como suma de fracciones unitarias 1 4 + 1 7 + 1 28 = 7 28 + 4 28 + 1 28 = 12

PÁGINA 19 PARA EMPEZAR. Escribir una fracción como suma de fracciones unitarias 1 4 + 1 7 + 1 28 = 7 28 + 4 28 + 1 28 = 12 Soluciones a las actividades de cada epígrafe PÁGINA 9 PARA EMPEZAR Escribir una fracción como suma de fracciones unitarias 4 + 7 + 8 = 7 8 + 4 8 + 8 = 8 = 7 Otra descomposición de 7 es: 7 = 9 7 = 8 7

Más detalles

PROBLEMAS FINANCIEROS

PROBLEMAS FINANCIEROS PROBLEMAS FINANCIEROS 1. Por un artículo que estaba rebajado un 12% hemos pagado 26,4 euros. Cuánto costaba antes de la rebaja? (Sol: 30 ) 2. Un ordenador cuesta 1 036 euros sin I.V.A. Sabiendo que se

Más detalles

PORCENTAJES. Ejercicio nº 1.- a Halla el número decimal correspondiente a cada uno de estos porcentajes: 75% 130% 2% 5,3% b Calcula el 130% de 75.

PORCENTAJES. Ejercicio nº 1.- a Halla el número decimal correspondiente a cada uno de estos porcentajes: 75% 130% 2% 5,3% b Calcula el 130% de 75. PORCENTAJES Ejercicio nº 1.- a Halla el número decimal correspondiente a cada uno de estos porcentajes: 75% 10% 2% 5,% b Calcula el 10% de 75. c Qué tanto por ciento representa 45 de 1 500? d Halla una

Más detalles

Problemas de Porcentajes

Problemas de Porcentajes Problemas de Porcentajes 1.- Un billete de avión a Paris costaba el verano pasado 460. Si este año ha subido un 20 %, cuánto vale el billete? 2.- Una tienda pone una oferta con una rebaja del 15 %. Si

Más detalles

PORCENTAJE Y PROPORCIONALIDAD

PORCENTAJE Y PROPORCIONALIDAD PORCENTAJE Y PROPORCIONALIDAD EL PORCENTAJE En una escuela el 15% de los alumnos son rubios, el 35% de los alumnos son morenos y el 50% de los alumnos son castaños. Que el 15% de los alumnos sean rubios

Más detalles

UNIDAD 5. PROBLEMAS ARITMÉTICOS.

UNIDAD 5. PROBLEMAS ARITMÉTICOS. UNIDAD 5. PROBLEMAS ARITMÉTICOS. Al final deberás haber aprendido... Interpretación de porcentajes y cálculo de los mismos. Resolución de problemas en los que aparezcan porcentajes. Conocer el concepto

Más detalles

4Soluciones a las actividades de cada epígrafe

4Soluciones a las actividades de cada epígrafe PÁGINA 64 Pág. 1 En esta unidad vas a revisar algunas técnicas y razonamientos que se utilizan en la resolución de situaciones cotidianas. Es decir, vas a fijar procedimientos que tienen una aplicación

Más detalles

EJERCICIOS DE MATEMÁTICAS 1º ESO

EJERCICIOS DE MATEMÁTICAS 1º ESO EJERCICIOS DE MATEMÁTICAS 1º ESO Realiza estos ejercicios y entrégaselos a tu profesor de Matemáticas en septiembre antes del examen. Te servirán para repasar toda la asignatura. 1.- Calcula: a) 3 4 +

Más detalles

ARITMÉTICA MERCANTIL

ARITMÉTICA MERCANTIL ARITMÉTICA MERCANTIL Página 49 REFLEXIONA Y RESUELVE Aumentos porcentuales En cuánto se transforman 50 si aumentan el 1%? 50 1,1 = 80 Calcula en cuánto se transforma un capital C si sufre un aumento del:

Más detalles

4 Proporcionalidad. 1. Razones y proporciones

4 Proporcionalidad. 1. Razones y proporciones 4 Proporcionalidad 1. Razones y proporciones Se han comprado 5 kg de melocotones por 10,5. Calcula mentalmente cuánto cuesta cada kilo. 10,5 : 5 = 2,1 /kg P I E N S A Y C A L C U L A 1 Calcula las razones

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. Página 4 En la última semana, los 0 monos de un parque natural han comido 0 kg de fruta. Acaban de traer monos más y disponemos de 080 kg de fruta. Para cuántos días tenemos? (Averigua previamente

Más detalles

Tema 7. Proporcionalidad

Tema 7. Proporcionalidad Matemáticas 1º ESO Ejercicios Tema 7 BLOQUE I: ARITMÉTICA Tema 7. Proporcionalidad 1. Calcula el número que falta x 14 a) 7 = 5 x b) = c) 28 9 36 a) 3,5 b) 20 c) 43,88 2,3 = 9,8 10,3 x 2. Indica si existe

Más detalles

Tema 8: Problemas con ecuaciones y sistemas. INTENTA RESOLVER TODOS ESTOS PROBLEMAS PLANTEANDO UNA ECUACIÓN

Tema 8: Problemas con ecuaciones y sistemas. INTENTA RESOLVER TODOS ESTOS PROBLEMAS PLANTEANDO UNA ECUACIÓN Matemáticas Ejercicios Tema 8 3º ESO Bloque II: Álgebra Tema 8: Problemas con ecuaciones y sistemas. INTENTA RESOLVER TODOS ESTOS PROBLEMAS PLANTEANDO UNA ECUACIÓN 1.- La base de un rectángulo mide 8 cm

Más detalles

Ejercicios resueltos de porcentajes

Ejercicios resueltos de porcentajes Ejercicios resueltos de porcentajes 1) Calcula los siguientes porcentajes: a) 30% de 600 b) 45% de 81 c) 50% de 340 d) 25% de 48 2) Calcula el término que falta en las siguientes expresiones: a) 40% de

Más detalles

IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 2º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16

IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 2º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16 IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 2º ESO Segunda parte Curso 15/16 Fecha de entrega: 11/2/16 Nombre: Grupo: DIVISIBILIDAD Y NÚMEROS ENTEROS 1. En las siguientes expresiones, saca factor común

Más detalles

8. Proporcionalidad SOLUCIONARIO 1. RAZÓN Y PROPORCIÓN 2. PROPORCIONALIDAD DIRECTA. 5. Calcula el cuarto proporcional o medio en: x 16.

8. Proporcionalidad SOLUCIONARIO 1. RAZÓN Y PROPORCIÓN 2. PROPORCIONALIDAD DIRECTA. 5. Calcula el cuarto proporcional o medio en: x 16. SOLUCIONARIO 61. Proporcionalidad 1. RAZÓN Y PROPORCIÓN PIENSA Y CALCULA Calcula mentalmente la velocidad media a la que fue un ciclista que recorrió 10 km en horas. En qué unidades epresarías la velocidad?

Más detalles

8 Proporcionalidad. 1. Razón y proporción

8 Proporcionalidad. 1. Razón y proporción 8 Proporcionalidad 1. Razón y proporción Calcula mentalmente la velocidad media a la que fue un ciclista que recorrió 150 km en 5 horas. En qué unidades expresarías la velocidad? 150 : 5 0 km/h P I E N

Más detalles

ARITMÉTICA MERCANTIL

ARITMÉTICA MERCANTIL UNIDAD 2 ARITMÉTICA MERCANTIL Página 52 1. Vamos a calcular en cuánto se transforma una cantidad C al sufrir un aumento del 12%: 12 C + 100 C = C + 0,12 C = 1,12 C Conclusión: Si C aumenta el 12%, se transforma

Más detalles

Tema 2 (2 a parte) Razones y proporciones

Tema 2 (2 a parte) Razones y proporciones Tema 2 (2 a parte) Razones y proporciones Una razón es una relación entre dos cantidades. Ej: a) en una bolsa con bolas blancas y negras, la razón de bolas blancas a negras es de 2 a 7. b) en cierto examen,

Más detalles

EJERCICIOS SOBRE : PROBLEMAS ECUACIONES DE PRIMER GRADO

EJERCICIOS SOBRE : PROBLEMAS ECUACIONES DE PRIMER GRADO 1) Calcular tres números consecutivos cuya suma sea 1. ) Las edades de dos hermanos suman 49 años. Calcularlas sabiendo que la edad de uno es superior en años a la del otro. ) Descomponer el número 171

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE 4 Pág. Página 60 FRIGORÍFICO 480 FACILIDADES DE PAGO EN TODOS LOS ARTÍCULOS: 25% A LA ENTREGA RESTO: EN 2 MENSUALIDADES SIN RECARGO En esta unidad vas a revisar algunas técnicas y razonamientos que se

Más detalles

5 Proporcionalidad. 1. Razón y proporción. Una pescadería cobra 160 por 8 kg de bogavantes. Cuánto cobrará por un kilo? Solución: 160 : 8 = 20 /kg

5 Proporcionalidad. 1. Razón y proporción. Una pescadería cobra 160 por 8 kg de bogavantes. Cuánto cobrará por un kilo? Solución: 160 : 8 = 20 /kg 5 Proporcionalidad 1. Razón y proporción Una pescadería cobra 160 por 8 kg de bogavantes. Cuánto cobrará por un kilo? P I E N S A Y C A L C U L A 160 : 8 20 /kg Carné calculista 1 409,6 : 68 C 6,02; R

Más detalles

REPASO DE LA PRIMERA EVALUACIÓN

REPASO DE LA PRIMERA EVALUACIÓN REPASO DE LA PRIMERA EVALUACIÓN º ESO. Escribe todos los divisores de: 7,, 8, y Sol: a),,,, 6, 8, 9,, 8,, 6, 7 b),,,, 6, 8,, c),,, 7,, 8 d),,, 9,, d),,, 6, 9, 8, 7,. Descompón en factores primos: 800,

Más detalles

MATEMÁTICAS-EJERCICIOS DE RECUPERACION PENDIENTES 1º E.S.O. 2º BLOQUE. Nombre y Apellidos:

MATEMÁTICAS-EJERCICIOS DE RECUPERACION PENDIENTES 1º E.S.O. 2º BLOQUE. Nombre y Apellidos: TEMA 7. SISTEMA METRICO DECIMAL 1. 2. Para pasar de una medida de superficie inferior a otra inmediatamente superior: a) Se multiplica el resultado de la medida por 100. b) Se multiplica el resultado de

Más detalles

1º BACHILLERATO MATEMÁTICAS CCSS

1º BACHILLERATO MATEMÁTICAS CCSS PÁGINA 87, EJERCICIO 48 1º BACHILLERATO MATEMÁTICAS CCSS PROBLEMAS TEMA 4 - ECUACIONES Y SISTEMAS La suma de los cuadrados de dos números naturales impares consecutivos es 170. Calcula el valor del siguiente

Más detalles

1.- a) Cómo se llama el término de una fracción que indica el número de partes en que se ha dividido la unidad?

1.- a) Cómo se llama el término de una fracción que indica el número de partes en que se ha dividido la unidad? 2.- OPERACIONES CON FRACCIONES Y DECIMALES Al finalizar el sexto curso de Educación Primaria, los estudiantes deben comprender los significados de las fracciones como partes de la unidad, como cocientes

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 5 PRACTICA Completa los siguientes sistemas de ecuaciones para que ambos tengan la solución =, =. + 7 = + = a) b) 4 = Sustituimos en cada ecuación =, = operamos: + = a) b) 4 = 0 Comprueba si

Más detalles

Proporcionalidad. 1. Calcula:

Proporcionalidad. 1. Calcula: Proporcionalidad 1. Calcula:. Resuelve los siguientes problemas: a. Tres kilos de naranjas cuestan,4. Cuánto cuestan dos kilos? b. Seis obreros descargan un camión en tres horas. Cuánto tardarán cuatro

Más detalles

Números reales. Aplicaciones: Las cuentas del dinero I

Números reales. Aplicaciones: Las cuentas del dinero I Números reales. Aplicaciones: Las cuentas del dinero I 1. Imagen de brucknerite, bajo licencia Creative Commons Seguro que estás harto de escuchar y de ver en las noticias "el petróleo sube un 10%, el

Más detalles

RESOLUCIÓN DE PROBLEMAS

RESOLUCIÓN DE PROBLEMAS RESOLUCIÓN DE PROBLEMAS La resolución de problemas mediante ecuaciones tiene una serie de dificultades que nos llevan a plantear un tema separado del resto. Las dificultades, llegado este punto en que

Más detalles

200 = 40 kg de fruta. Es la razón de proporcionalidad. kg de fruta 200 400 80 40 400 120 3000 800 nº de árboles 5 10 2 1 10 3 75 20

200 = 40 kg de fruta. Es la razón de proporcionalidad. kg de fruta 200 400 80 40 400 120 3000 800 nº de árboles 5 10 2 1 10 3 75 20 77 CAPÍTULO 8: Magnitudes proporcionales. Porcentajes. Matemáticas 2º de ESO RAZÓN Y PROPORCIÓN Ya sabes que: Razón, en Matemáticas, es una comparación entre los valores de dos variables. Se expresa en

Más detalles

SOLO ENUNCIADOS - PORCENTAJES. En una clase de 25 alumnos hay 10 chicos y 15 chicas. Qué proporción hay de chicos y chicas?

SOLO ENUNCIADOS - PORCENTAJES. En una clase de 25 alumnos hay 10 chicos y 15 chicas. Qué proporción hay de chicos y chicas? AULA MATEMÁTICA - ACTIVIDADES DE AMPLIACIÓN Abel Martín 002 SOLO ENUNCIADOS - En una clase de 25 alumnos hay 10 chicos y 15 chicas. Qué proporción hay de chicos y chicas? El sueldo de un trabajador A es

Más detalles

1.- a) Escribe la razón entre los siguientes números: 24 y 6; 15 y 5; 49 y 7; 114 y 16.

1.- a) Escribe la razón entre los siguientes números: 24 y 6; 15 y 5; 49 y 7; 114 y 16. 3.- PORCENTAJES Y PROPORCIONALIDAD Al finalizar el sexto curso de Educación Primaria, los estudiantes deben comprender la relación entre fracciones, decimales y porcentajes, y usarla para resolver problemas

Más detalles

5. Los números decimales

5. Los números decimales 40. Los números decimales 6. Representa en la recta los siguientes números a) 0, b) 1,7 c) 2,4 d) 3,2 1. NÚMEROS DECIMALES 3,2 1,7 0, 3 2 1 0 2,4 1 2 3 Escribe la fracción y calcula mentalmente el número

Más detalles

Fíjate cómo se expresan los siguientes porcentajes y completa la tabla calculando mentalmente:

Fíjate cómo se expresan los siguientes porcentajes y completa la tabla calculando mentalmente: 2 Matemática financiera 1. Porcentajes Piensa y calcula Fíjate cómo se expresan los siguientes porcentajes y completa la tabla calculando mentalmente: Porcentaje 10% = 10/100 = 1/10 20% = 20/100 = 1/5

Más detalles

Problemas de Sistemas de Ecuaciones de Primer Grado con dos Incógnitas

Problemas de Sistemas de Ecuaciones de Primer Grado con dos Incógnitas Problemas de Sistemas de Ecuaciones de Primer Grado con dos Incógnitas Recuerda las cuatro fases que tendremos que seguir para resolver un problema: 1.- Comprender el problema. 2.- Plantear el sistema

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 ECUACIONES Y SISTEMAS. PROBLEMAS 1. El lado de un cuadrado mide 3 m más que el lado de otro cuadrado. Si la suma de las dos áreas es 89 m, calcula las dimensiones de los cuadrados.. La suma de dos números

Más detalles

ACTIVIDADES DEL TEMA 6

ACTIVIDADES DEL TEMA 6 Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DEL TEMA 6 1. En un libro de cocina nos hemos encontrado la siguiente receta: Bizcocho de chocolate (receta

Más detalles

CONCEPTOS PREVIOS TEMA 2

CONCEPTOS PREVIOS TEMA 2 1.PROPORCIONALIDAD 1.1 REPARTOS PROPORCIONALES CONCEPTOS PREVIOS TEMA 2 Cuando queremos repartir una cantidad entre varias personas, siempre dividimos el total por el número de personas que forman parte

Más detalles

( ) 6. NÚMEROS NATURALES Y ENTEROS 1. Efectúa: = =

( ) 6. NÚMEROS NATURALES Y ENTEROS 1. Efectúa: = = NÚMEROS NATURALES Y ENTEROS. Efectúa a) ( ) ( ) 8 ( ) b) ( ) ( ) c) ( ) d) ( ) e) ( 8) ( ) f) ( ) ( ) g) [ ( ) ] h) ( ) ( ( ) ) ( ) ( ). Al enchufar la corriente a un congelador, la temperatura desciende

Más detalles

BLOQUE III Funciones y gráficas

BLOQUE III Funciones y gráficas BLOQUE III Funciones y gráficas. Características globales de las funciones 9. Rectas e hipérbolas 0. Función cuadrática Características globales de las funciones. Funciones Considera los rectángulos con

Más detalles

BOLETIN Nº 5 MATEMÁTICAS 3º ESO Ecuaciones y sistemas Curso 2011/12

BOLETIN Nº 5 MATEMÁTICAS 3º ESO Ecuaciones y sistemas Curso 2011/12 BOLETIN Nº MATEMÁTICAS º ESO Ecuaciones sistemas Curso / ) ( ) ) ( ) 8 ( ) ) ) 8 ( ) ( ) ) ( )( ) ) ( )( ) ( ) ) ( ) ( ) ( ) ( ) 8) ( ) 8( ) ( ) ) ( ) ( 8) ( ) ) (8 ) ( ) ( ) ) ( ) ( ) (8 ) ) ( ) ( ) (

Más detalles

ACTIVIDADES DE REPASO. MATEMÁTICAS 1º ESO

ACTIVIDADES DE REPASO. MATEMÁTICAS 1º ESO ACTIVIDADES DE REPASO. MATEMÁTICAS º ESO NÚMEROS NATURALES. Calcula: a) 4 6 5 + 3 4 b) (4 6 5) + 3 4 c) 4 6 (5 + 3 4) d) 4 (6 5) + 3 4 e) (5 + 0) 8 f) (73 37) : 6. Calcula: a) 987 + 5 + 3 784 b) 3 978

Más detalles

Problemas aritméticos

Problemas aritméticos Problemas aritméticos Contenidos 1. Proporcionalidad directa e inversa Proporcionalidad directa Proporcionalidad inversa Repartos proporcionales Proporcionalidad compuesta 2. Porcentajes Porcentajes Aumentos

Más detalles

PROBLEMAS ORIENTATIVOS PARA EL EXAMEN DE INGRESO AL CICLO FORMATIVO DE GRADO MEDIO

PROBLEMAS ORIENTATIVOS PARA EL EXAMEN DE INGRESO AL CICLO FORMATIVO DE GRADO MEDIO OPERACIONES BÁSICAS CON NÚMEROS NATURALES, ENTEROS, DECIMALES Y FRACCIONES (SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN) Y OPERACIONES COMBINADAS DE LAS ANTERIORES. 1. Realizar las siguientes operaciones con

Más detalles

ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO (PLANTEAMIENTO, DESARROLLO Y SOLUCIÓN) DE FORMA CLARA Y CONCISA.

ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO (PLANTEAMIENTO, DESARROLLO Y SOLUCIÓN) DE FORMA CLARA Y CONCISA. EJERCICIOS DE REPASO MATEMÁTICAS.- º ESO ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO (PLANTEAMIENTO DESARROLLO Y SOLUCIÓN) DE FORMA CLARA Y CONCISA.. Sergio trabaja horas todas las semanas

Más detalles

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN Contenidos Mínimos I. Estrategias, habilidades, destrezas y actitudes generales II. Números: Resolución de problemas utilizando toda

Más detalles

10Soluciones a los ejercicios y problemas PÁGINA 196

10Soluciones a los ejercicios y problemas PÁGINA 196 0Soluciones a los ejercicios y problemas PÁGINA 96 Pág. E presiones algebraicas Llamando a un número indeterminado, asocia cada enunciado con la epresión que le corresponde: a) El doble del número. b)

Más detalles

PROPORCIONALIDAD - teoría

PROPORCIONALIDAD - teoría PROPORCIONALIDAD RAZÓN: razón de dos números es el cociente indicado de ambos. Es decir, la razón de los dos números a y b es a:b, o lo que es lo mismo, la fracción b a. PROPORCIÓN: es la igualdad de dos

Más detalles

CUADERNO DE VERANO 3º ESO FRACCIONES. 1. Efectúa las siguientes operaciones: 5 = 7 = 1 1 = c) 2 3 + = d) 5 29 : = e) 4. f) 24

CUADERNO DE VERANO 3º ESO FRACCIONES. 1. Efectúa las siguientes operaciones: 5 = 7 = 1 1 = c) 2 3 + = d) 5 29 : = e) 4. f) 24 CUADERNO DE VERANO º ESO FRACCIONES. Efectúa las siguientes operaciones: a) 0 9 9 b) 0 0 7 c) d) 8 e) 7 9 : f) 9 9 7 : : ) El aire es una mezcla de gases. En la capa más próima a la superficie de la Tierra,

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles

2 6 = 12 10 6 = 60. 15 paquetes 330 kg 6 paquetes x kg

2 6 = 12 10 6 = 60. 15 paquetes 330 kg 6 paquetes x kg 70 CAPÍTULO 6: PROPORCIONALIDAD: 3º de ESO 1. PROPORCIONALIDAD DIRECTA 1.1. Magnitudes directamente proporcionales Recuerda que: Dos magnitudes son directamente proporcionales cuando al multiplicar o dividir

Más detalles

2 Fracciones y. números decimales. 1. Operaciones con fracciones. Realiza mentalmente las siguientes operaciones: Solución: a) b) c) Carné calculista

2 Fracciones y. números decimales. 1. Operaciones con fracciones. Realiza mentalmente las siguientes operaciones: Solución: a) b) c) Carné calculista Fracciones y números decimales. Operaciones con fracciones Realiza mentalmente las siguientes operaciones: + c) 0 c) P I E N S A Y C A L C U L A Carné calculista : C = ; R = Calcula mentalmente: + c) c)

Más detalles

Tema 4: Problemas aritméticos.

Tema 4: Problemas aritméticos. Tema 4: Problemas aritméticos. Ejercicio 1. Cómo se pueden repartir 2.310 entre tres hermanos de forma que al mayor le corresponda la mitad que al menor y a este el triple que al mediano? El reparto ha

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 60 PRACTICA Calcula mentalmente: a) 2% de 400 b) 2% de 400 c) 2% de 80 d) 2% de 80 e) 7% de 400 f) 7% de 600 g) 20% de 2 000 h) 20% de 2 000 a) 00 b) 00 c) 20 d) 00 e) 300 f) 00 g) 400 h) 2

Más detalles

Porcentajes. Cajón de Ciencias. Qué es un porcentaje?

Porcentajes. Cajón de Ciencias. Qué es un porcentaje? Porcentajes Qué es un porcentaje? Para empezar, qué me están preguntando cuando me piden que calcule el tanto por ciento de un número? "Porcentaje" quiere decir "de cada 100, cojo tanto". Por ejemplo,

Más detalles

5Soluciones a los ejercicios y problemas PÁGINA 114

5Soluciones a los ejercicios y problemas PÁGINA 114 5Soluciones a los ejercicios y problemas PÁGINA 4 Pág. P RACTICA Ecuaciones: soluciones por tanteo Es o solución de alguna de las siguientes ecuaciones? Compruébalo. a) 5 b) 4 c) ( ) d) 4 4 a)? 0? 5 no

Más detalles

NÚMEROS Y OPERACIONES

NÚMEROS Y OPERACIONES NÚMEROS Y OPERACIONES NUESTRO SISTEMA DE NUMERACIÓN Para escribir un número usamos sólo diez cifras, que son: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9 El número 2 1 403.745 está formado por siete órdenes de unidades.

Más detalles

EJERCICIOS DE REPASO 2º ESO

EJERCICIOS DE REPASO 2º ESO NOMBRE: CURSO: 0-0 EJERCICIOS DE REPASO º ESO.- Calcula, poniendo los pasos que haces, no sólo el resultado: a ) - ( - ) + 8 ( - ) = b) ( - 8 ) [ 7 + ( - 9 ) ] = c) 7 ( 8 ) + : ( - + 7 ) = d) 6 : ( 8 )

Más detalles

IES Los Colegiales Matemáticas 1º ESO Tema 1 Los Números Naturales

IES Los Colegiales Matemáticas 1º ESO Tema 1 Los Números Naturales SOLUCIONES PROBLEMAS DE NÚMEROS NATURALES 1.- Francisco tiene 75. Roberto tiene 13 más que Francisco. Luis tiene 21 menos que Roberto. Cuánto tienen entre los tres? Francisco: 75 Roberto: 75 + 13 = 88

Más detalles

Ecuaciones de 1er y 2º grado

Ecuaciones de 1er y 2º grado Ecuaciones de er y º grado. Ecuaciones de er grado Resuelve mentalmente: a) + = b) = c) = d) = P I E N S A Y C A L C U L A a) = b) = c) = d) = Carné calculista, : C =,; R = 0, Resuelve las siguientes ecuaciones:

Más detalles

6Soluciones a los ejercicios y problemas PÁGINA 133

6Soluciones a los ejercicios y problemas PÁGINA 133 PÁGINA 33 Pág. P RACTICA Comprueba si x =, y = es solución de los siguientes sistemas de ecuaciones: x y = 4 3x 4y = 0 a) b) 5x + y = 0 4x + 3y = 5 x y = 4 a) ( ) = 5? 4 No es solución. 5x + y = 0 5 =

Más detalles

Tema 4: Problemas Aritméticos

Tema 4: Problemas Aritméticos Tema 4: Problemas Aritméticos 4.1 Proporcionalidad simple. Vamos a en primer lugar a responder a dos preguntas: Cuándo se dice que dos magnitudes son directamente proporcionales? Se dice que son directamente

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 4 Problemas aritméticos Recuerda lo fundamental Curso:... Fecha:... PROBLEMAS EJEMPLO: REGLA DE TRES DIRECTA 2 30 3 x x EJEMPLO: REGLA DE TRES INVERSA 12 5 6 x x REGLA DE TRES COMPUESTA EJEMPLO: p. inversa

Más detalles

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA RECUPERAR LAS MATEMÁTICAS DE º ESO El profesor/a de la asignatura se encargará de ir evaluando al alumno/a con la asignatura pendiente en la forma que le indique: realización de exámenes,

Más detalles

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7 1 Resuelve las siguientes ecuaciones: a) x 1 = x + x 6 = c) x 9x + = d) x 6x 7 = = a) x = 1 y x = 1 x = 3 y x = c) x = 4 y x = 5 d) x = 1 y x = 7 Resuelve las siguientes ecuaciones de primer grado: a)

Más detalles

4Soluciones a los ejercicios y problemas

4Soluciones a los ejercicios y problemas PÁGINA 75 Pág. 1 P RACTICA 1 Calcula mentalmente: a) 50% de 360 b)25% de 88 c) 10% de 1 375 d)20% de 255 e) 75% de 800 f) 30% de 150 a) 50% de 360 8 180 b) 25% de 88 8 22 c) 10% de 1 375 8 137,5 d) 20%

Más detalles

Carrera: Técnico Superior en Programación

Carrera: Técnico Superior en Programación 1 Sistema de dos ecuaciones lineales Resolver los siguientes sistemas de dos ecuaciones lineales en forma analítica y gráfica. Verificar los resultados obtenidos. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 9 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica Comprueba si = 2, = 3 es solución del siguiente sistema: 2 + 4 3 = 14 5 2 + 3 = 13 P I E N S A C A L C U L A + 4 = 14 5 + = 13

Más detalles

Matemáticas 5º primaria F.G. Lorca Ficha 1. Nombre : Fecha:

Matemáticas 5º primaria F.G. Lorca Ficha 1. Nombre : Fecha: Matemáticas 5º primaria F.G. Lorca Ficha 1 1.- Lee estos números: 789: 5.456: 23.568 345.678: 678.243: 2.- Millón Centena de M decena de M Millar centenas decenas unidades 7 6 8 5 4 8 9 7. 685.489: 7 millones

Más detalles

5 8 8 22.50 ; 5 x 8 22.50; x 36 22.50 x

5 8 8 22.50 ; 5 x 8 22.50; x 36 22.50 x 1 de 7 MAGNITUDES DIRECTAMENTE PROPORCIONALES Ejemplo 1: Un saco de patatas pesa 20 kg. Cuánto pesan 2 sacos? Un cargamento de patatas pesa 520 kg. Cuántos sacos se podrán hacer? CASO 3 Nº sacos 1 2 y

Más detalles

Resuelve problemas PÁGINA 75

Resuelve problemas PÁGINA 75 PÁGINA 7 Pág. 1 Resuelve problemas 9 Una empresa de alquiler de coches cobra por día y por kilómetros recorridos. Un cliente pagó 10 por días y 400 km, y otro pagó 17 por días y 00 km. Averigua cuánto

Más detalles

Para resolver estos problemas podemos seguir tres pasos:

Para resolver estos problemas podemos seguir tres pasos: RESOLUCIÓN DE PROBLEMAS Algunos problemas pueden resolverse empleando sistemas de dos ecuaciones de primer grado con dos incógnitas. Muchas veces se pueden resolver utilizando una sola ecuación con una

Más detalles

4º ESO OPCIÓN B Bloque II: Álgebra. Aplicaciones ecuaciones, inecuaciones y sistemas: Problemas.

4º ESO OPCIÓN B Bloque II: Álgebra. Aplicaciones ecuaciones, inecuaciones y sistemas: Problemas. Matemáticas 4º ESO OPCIÓN B Bloque II: Álgebra Aplicaciones ecuaciones, inecuaciones y sistemas: Problemas. NOTA: Si encuentras algún posible error en las soluciones de estos ejercicios comunica número

Más detalles

Sistemas de dos ecuaciones lineales con dos incógnitas

Sistemas de dos ecuaciones lineales con dos incógnitas Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente

Más detalles

EJERCICIOS DE REPASO DE LA PRIMERA EVALUACIÓN

EJERCICIOS DE REPASO DE LA PRIMERA EVALUACIÓN EJERCICIOS DE REPASO DE LA PRIMERA EVALUACIÓN 2º ESO TEMA 1: DIVISIBILIDAD Y NÚMEROS ENTEROS 1. Los alumnos de 2º A y 2º B que son 28 y 24 respectivamente van a hacer un trabajo en grupos para la clase

Más detalles

Proporcionalidad. Objetivos. Antes de empezar. 1.Proporción numérica...pág. 62 Razón entre dos números Proporción numérica

Proporcionalidad. Objetivos. Antes de empezar. 1.Proporción numérica...pág. 62 Razón entre dos números Proporción numérica 4 Proporcionalidad Objetivos En esta quincena aprenderás a: Distinguir entre magnitudes directa e inversamente proporcionales. Resolver distintas situaciones sobre proporcionalidad directa e inversa con

Más detalles

a 4a (-5) a a op(a) 5-a Op(a-5) 2 5 7 3 3. El valor absoluto de un número menor que 1 es 9. De qué número se trata?

a 4a (-5) a a op(a) 5-a Op(a-5) 2 5 7 3 3. El valor absoluto de un número menor que 1 es 9. De qué número se trata? NÚMEROS ENTEROS 1. Calcula: - (4-3) (-2) 2 = b) (-2) 4 + - 3 (-1) = c) (8-3) : (-1) - 1 (-6) : (3 - ) + = e) [-(-2)+7-(-2) (-3)]-(-2)= f) -9 + [ 10 : (-3-2) -1 ] + 4 (-3) = g) [ -4 (8 - - 4) + (-9-3) :

Más detalles

11. Pruebas de acceso. a Ciclos Formativos

11. Pruebas de acceso. a Ciclos Formativos 11. Pruebas de acceso a Ciclos Formativos Ámbito científico 1. Septiembre 1997 2. Septiembre 1998 3. Septiembre 1999 4. Septiembre 2000 5. Junio 2001 6. Junio 2002 7. Mayo 2003 8. Mayo 2004 204 Pruebas

Más detalles

Proporciones. 1.- Averigua el número por el que hay que multiplicar y/o dividir para pasar de una serie a otra y que sean proporcionales:

Proporciones. 1.- Averigua el número por el que hay que multiplicar y/o dividir para pasar de una serie a otra y que sean proporcionales: Proporciones 1.- Averigua el número por el que hay que multiplicar y/o dividir para pasar de una serie a otra y que sean proporcionales: 1 2 3 4 5 7 10 15 30 3 4 5 6 7 8 9 18 1 2 6 7 3 6 9 15 1 10 100

Más detalles

3. Un número x dividido por 12 da como cociente 7 y resto 9. a) Halla x b) Qué número tienes que sumar a x para que la división por 12 sea exacta?

3. Un número x dividido por 12 da como cociente 7 y resto 9. a) Halla x b) Qué número tienes que sumar a x para que la división por 12 sea exacta? . a) Expresa en forma polinómica: 8 b) Representa en el sistema binario el número. a) Calcula: (+).()+.(4) b) Escribe en forma de potencia: 6. Un número x dividido por da como cociente 7 y resto 9. a)

Más detalles

Tema 1: Herramientas aritméticas

Tema 1: Herramientas aritméticas Tema 1: Herramientas aritméticas 1.- Porcentajes De los 30 alumnos de una clase, el 40% ha pasado la gripe este invierno, cuántos alumnos han pasado la gripe? Para averiguarlo, tenemos que hacer una multiplicación

Más detalles

Taller de Nivelación Académica de Matemáticas Ciclo escolar: Septiembre Diciembre 2015

Taller de Nivelación Académica de Matemáticas Ciclo escolar: Septiembre Diciembre 2015 UNIVERSIDAD TECNOLÓGICA DEL CENTRO IZAMAL, YUCATÁN, MÉXICO DIRECCIÒN DE CARRERAS TURISMO, ÁREA HOTELERÍA Y GASTRONOMÍA Taller de Nivelación Académica de Matemáticas Ciclo escolar: Septiembre Diciembre

Más detalles

PARA EMPEZAR. Arquímedes nació en el año 287 a. C. en Siracusa (Sicilia). Cuántos años han transcurrido desde su nacimiento?

PARA EMPEZAR. Arquímedes nació en el año 287 a. C. en Siracusa (Sicilia). Cuántos años han transcurrido desde su nacimiento? NÚMEROS RACIONALES PARA EMPEZAR.. Arquímedes nació en el año a. C. en Siracusa (Sicilia). Cuántos años han transcurrido desde su nacimiento? x Han transcurrido años, siendo x el número de día del año actual.

Más detalles

Actividades para preparar el examen de Proporcionalidad.

Actividades para preparar el examen de Proporcionalidad. Actividades para preparar el examen de Proporcionalidad. Departamento de Matemáticas del I.E.S. Salvador Serrano Segundo de ESO - Curso.0 -.0.- Contesta si son ciertas las siguientes afirmaciones:. a n

Más detalles

Tema: Ecuaciones y sistemas de ecuaciones

Tema: Ecuaciones y sistemas de ecuaciones Tema: Ecuaciones y sistemas de ecuaciones 1. Las siguientes ecuaciones tienen alguna solución entera. Intenta encontrarlas tanteando. Qué tipo de ecuación es cada una?. a) x + 6 = b) x x = 0 c) x x = 1

Más detalles

Julián Moreno Mestre www.juliweb.es tlf. 629381836. del segundo dan como resultado el tercero. Sol: 8, 9, 10

Julián Moreno Mestre www.juliweb.es tlf. 629381836. del segundo dan como resultado el tercero. Sol: 8, 9, 10 Problemas de números: 1º La diferencia entre los cuadrados de dos números consecutivos es 17. Cuáles son dichos números?. Sol: 8 y 9 2º Dos números suman 22 y la diferencia de sus cuadrados es 44. Halla

Más detalles

IES CUADERNO Nº 4 NOMBRE: FECHA: / / Proporcionalidad

IES CUADERNO Nº 4 NOMBRE: FECHA: / / Proporcionalidad Proporcionalidad Contenidos 1. Proporción numérica Razón y proporción 2. Proporcionalidad directa Razón de proporcionalidad Regla de tres directa Reducción a la unidad 3. Proporcionalidad inversa Constante

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 7 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica a) En qué punto se cortan la gráfica roja la azul del dibujo de la izquierda? b) Tienen algún punto en común las rectas de la

Más detalles

Números racionales 1. 1.- En un cine hay 63 personas de las que 4/7 son chicas, cuántos chicos y chicas hay?

Números racionales 1. 1.- En un cine hay 63 personas de las que 4/7 son chicas, cuántos chicos y chicas hay? Números racionales Los problemas que se presentan a continuación son problemas "tipo". Estúdialos detenidamente pues encontrarás multitud de situaciones cotidianas cuya resolución exige los mismos procesos

Más detalles

PROBLEMAS QUE SE RESUELVEN CON ECUACIONES

PROBLEMAS QUE SE RESUELVEN CON ECUACIONES PROBLEMAS QUE SE RESUELVEN CON ECUACIONES 1º) El perímetro de un triángulo isósceles mide 15 cm. El lado desigual del triángulo es la mitad de cada uno de los lados iguales. Halla la longitud de cada uno

Más detalles

CUADERNILLO DE VERANO MATEMÁTICAS 1º ESO

CUADERNILLO DE VERANO MATEMÁTICAS 1º ESO CUADERNILLO DE VERANO MATEMÁTICAS 1º ESO Potencias y raíces. Expresa en forma de potencia: a) 7 7 7 7 = b) 8 8 8 8 8 8 8 = c) 6 6 6 6 6 = d) 5 5 5 5 = e) 9 9 9 = f) 3 3 = Calcula las siguientes potencias:

Más detalles

Problemas de ecuaciones Colección B.2. MasMates.com Colecciones de ejercicios

Problemas de ecuaciones Colección B.2. MasMates.com Colecciones de ejercicios 1. Calcula las edades de Carolina, Miguel y Francisco, sabiendo que en total suman 54 años, la edad de Francisco es igual al doble de la de Miguel y la de Carolina es inferior en 6 años a la suma de las

Más detalles

PLAN DE TRABAJO para el VERANO

PLAN DE TRABAJO para el VERANO PLAN DE TRABAJO para el VERANO MATEMÁTICAS 4 º ESO OPCIÓN A PENDIENTES IES JOVELLANOS Nombre: Esta colección de ejercicios ha sido diseñada con el objetivo de ayudar a preparar a aquellos alumnos y alumnas

Más detalles

PROBLEMAS ECUACIONES 1er GRADO

PROBLEMAS ECUACIONES 1er GRADO PROBLEMAS ECUACIONES 1er GRADO 1.- Dos amigos juntan el dinero que tienen, uno tiene el doble que el otro. Se gastan 20, y les quedan 13 Cuánto dinero tiene cada uno? 2.- He comprado 8 cuadernos y he pagado

Más detalles

REPASO DE VERANO 4º ESO. IES Santiago Grisolía. José Aurelio Pina Romero www.pinae.es pinamix@gmail.com

REPASO DE VERANO 4º ESO. IES Santiago Grisolía. José Aurelio Pina Romero www.pinae.es pinamix@gmail.com REPASO DE VERANO IES Santiago Grisolía José Aurelio Pina Romero www.pinae.es pinamix@gmail.com I.E.S. SANTIAGO GRISOLÍA CURSO 01/01 NOMBRE Y APELLIDOS FECHA TEMA1: OPERACIONES CON NÚMEROS RACIONALES 1.

Más detalles

FRACCIONES EJERCICIOS PARA REPASAR VERANO 2012

FRACCIONES EJERCICIOS PARA REPASAR VERANO 2012 FRACCIONES EJERCICIOS PARA REPASAR VERANO 2012 PORCENTAJES 1.- El precio de un libro sin IVA es de 50. Si nos cobran 55, cuàl es el porcentaje del IVA que nos han cobrado. 2.-En un tienda hemos comprado

Más detalles